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INTRODUCTION

How is sensory information coded and processed in 

the brain? Our understanding of the answer to this 

question will be in terms of theories of brain func-

tion, theories that can be instantiated in mathematical 

models. Successful models will simulate real behavior 

and experience, and they will consist of parts that are 

identifiable with known brain structures. It is here that

the development of useful models can begin.

Neuroanatomy can be described as a series of layers 

of neurons linked by parallel connections (Bridgeman, 

1989, Ch. 2). Within these layers, neurons inhibit one 

another, a definition of lateral inhibition (Ratliff, 1965) 

that is known to take place at several levels in the 

afferent visual system. It is distinct from forward inhi-

bition, where neurons inhibit neurons in a subsequent 

layer, and backward inhibition, where a more periph-

eral layer is inhibited.

The implications of lateral inhibition for sensory 

coding are not yet completely worked out, however. 

The inhibition does more than just suppress activity 

– it also normalizes output, so that the output of a 

layer undergoing lateral inhibition is less affected by 

the gross level of afferent activity than the input to 

that layer (Bridgeman, 1971). This point was later 

elaborated by Grossberg (1973). Lateral inhibition also 

restructures the coding of afferent sensory informa-

tion, as will be explored below.

Application to metacontrast

In metacontrast (Stigler, 1910), a target is adjacent to 

a non-overlapping mask that is often of equal energy. 

If target and mask are presented briefly and simulta-

neously, both are seen. But if the mask’s appearance 

is delayed by about 50-100 ms, the target is no longer 

visible. It is a form of backward masking, so named 

because the effect seems to operate backward in time. 

Because the target and mask do not overlap either in 

time or in space at the peak of masking, the phenom-

enon promises to provide insight into both spatial and 
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tively the effects of attention on object substi-

tution by varying the time interval over which 

sensory codes are analyzed.

Advances in Cognitive Psychology

http://www.ac-psych.org


34

http://www.ac-psych.org

Bruce Bridgeman

temporal aspects of visual coding. This masking is also 

described as ‘B-type’ masking, or U-shaped masking 

(referring to the shape of the mask-precedes-target 

part of the masking function). 

A simple ‘busy signal’ model of the sort often in-

voked for forward masking can be eliminated imme-

diately as an explanation for metacontrast, because it 

is the first stimulus that is masked, not the second. In

these models, an incoming stimulus occupies process-

ing resources so that a second stimulus that arrives 

before the processing of the first one is complete does

not get processed (Arnell & Jolicoeur, 1999).

The first models of metacontrast invoked a few neu-

rons; one slowly conducting neuron sensed the target, 

while a faster-conducting neuron sensed the mask 

(Weisstein, 1968). At a subsequent neural layer, the 

fast ‘mask’ signal caught up to the slow ‘target’ sig-

nal and inhibited it by forward inhibition. Simulations 

showed that a simple, mathematically analyzable 

nerve network could simulate backward masking (re-

viewed by Breitmeyer, 1984). Breitmeyer and Ganz 

(1976) later suggested a similar 2-stage architecture, 

again relying on differing conduction speeds in differ-

ent channels and with a single cell as the hypothesized  

output, but without a mathematical model.

A model’s linking hypothesis is the output of 

the model that eventually links to perception. For 

Weisstein, the output of a single ‘detector’ neuron or 

feature detector coded the presence of a perceived 

object. The idea seemed to fit well with the feature

detectors described in the visual systems of the cat 

and monkey. Problems with coding by feature detec-

tors soon appeared, however (Weisstein, 1972). How 

could the brain identify novel objects with existing de-

tectors, and who looks at the activities of the detectors 

to decide what is present?

Distributed coding

An alternative to the feature detector scheme is dis-

tributed coding (Pribram, 1971), where it is not the 

gross level of activity of one or a group of neurons 

that codes a meaningful visual stimulus, but rather the 

combinations of activities of a large number of neu-

rons. The combinatorics of this scheme are so much 

more efficient than the detector idea that its advan-

tages become compelling even for relatively small 

neural nets. Consider the simplified case of binary, 

on-off detectors. Detecting 1024 distinct states with 

these detectors, for example, requires 1024 neurons, 

and a subsequent layer that must know the meaning of 

each of the 1024 messages. A distributed code, how-

ever, can handle the same message with just 10 neu-

rons assembled as a 10-bit binary number. Efficiency

increases 100-fold. As the number of detectable ob-

jects increases, the economies of distributed coding 

become even more extreme. 

Modeling of distributed codes followed quickly on 

the theory. A lateral inhibitory model of visual mask-

ing (Bridgeman, 1971) started with simulation of very 

general consequences of lateral inhibition for informa-

tion coding in neural networks. Stimulating a neuron 

in a layer of simulated neurons linked by lateral inhibi-

tion causes a reduction in the activity of the neuron’s 

neighbors. But the neighbors of those cells, experi-

encing less inhibition, will increase their activity. The 

next set of neighbors will be more inhibited and will 

decrease their activity, and so on. Because the inhibi-

tion requires a delay, the result is a series of damped 

oscillations that proceed from the original point of dis-

turbance like ripples in a pond. Eventually the whole 

pond’s activity is changed by the single disturbance. 

One can no longer talk of feature detectors in this 

environment, because now stimulus-specific informa-

tion is distributed across the relative activities of a 

large number of neurons. More complex stimuli will 

yield more complex patterns of excitation and inhibi-

tion, because each edge or contour in the image elicits 

an extensive series of waves. Each wave pattern is 

specific to the stimulus that elicited it; neuron-by-neu-

ron illustrations of network states demonstrating this  

are given in Bridgeman (1971). In the resulting cod-

ing, any stimulus entering the network eventually be-

comes coded (with varying information density) over 

the entire network.

A new linking hypothesis accompanies the new cod-

ing. If a stimulus changes activity across an entire net-

work, then the presence of the stimulus must be coded 

in the network-wide pattern rather than in a particular 

cell. The identity of an incoming stimulus can be found 

by comparing the new activity with the activity elicited 

by other known stimuli. In the model used here this 

is done with squared correlations, reflecting the pro-

portion of variance in the nerve net’s activity that is 

attributable to a particular stimulus. High correlations 

indicate the presence of the target stimulus, while low 

correlations signal masking. 

This coding scheme is different from feature detec-

tors because no particular neuron’s activity is identified

with a particular stimulus – it is the pattern that is im-

portant. Correlation is a way  to measure the similarity  

of two patterns of stimulation, in the case of masking 

a target-alone pattern and a target-mask pattern, to 

identify  whether and when activity attributable to a 
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target stimulus remains present in the modeled nerve 

net.

These ideas are incorporated in a computer simula-

tion of a lateral inhibitory nerve net. The scheme has 

been successful in modeling a number of properties of 

metacontrast masking (Bridgeman 1971, 1978, 2001). 

It was also the most successful of a group of mathe-

matical models in simulating a variation on backward 

masking, where target and mask were temporally con-

tiguous and the mask was varied in duration (Di Lollo, 

von Mühlenen, Enns & Bridgeman, 2004).

Simultaneous-onset and object 
substitution masking

In the 1960s and 1970s it was thought that stimulus 

onset asynchrony (SOA) was the critical timing vari-

able in backward masking. Subsequent work, however, 

has identified interstimulus interval (ISI) and stimu-

lus termination asynchrony (STA) as more important 

(Francis, Rothmayer & Hermens, 2004). A new mask-

ing paradigm, simultaneous-onset, brought a new 

challenge for mathematical modelers (Di Lollo, Bischof 

& Dixon, 1993). This paradigm presents a target and 

mask with geometries similar to metacontrast designs. 

They appear simultaneously, and the mask disappears 

after the target with a varying delay. Bischof and Di 

Lollo (1995) showed that metacontrast masking could 

be obtained with a simultaneous-onset paradigm.

If target and mask onset and offset are simultane-

ous, the target remains visible (identical to the zero-

SOA condition of conventional metacontrast designs), 

but masking strengthens as the mask offset is delayed 

after the target offset. The target remains masked 

indefinitely as the mask offset is delayed further. The

masking is weak if only one target and mask are pre-

sented, but becomes stronger as attention must be 

divided among larger numbers of masks in an array, 

with only one accompanied by a target. 

Di Lollo, Enns and Rensink (2000) have extended 

this masking to object substitution, and have main-

tained that feed-forward or one-layer models cannot 

account for such a result, but Francis & Hermens 

(2002) used Weisstein’s original 1968 model, the 

Bridgeman (1978) model, and a model by Francis 

(1997) to simulate functions similar to those obtained 

psychophysically by Di Lollo et al. (2000). 

Di Lollo, Enns and Rensink (2002) criticized the 

simulations, because Francis & Hermens had simu-

lated stronger attention by weakening the mask en-

ergy. In the strongest attention condition there was no 

mask energy at all, and unsurprisingly there was also 

no masking. The simulations did show, however, that 

some of the properties of object substitution masking 

could be simulated with existing mathematical models 

and without reentrant processing, challenging the con-

clusion of Di Lollo et al. (2002) that object substitution 

includes “an early process affected by physical factors 

such as adapting luminance and a later process af-

fected by attentional factors”. The questions addressed 

here are whether the attentional factors can be mod-

eled independently of mask intensity, and whether the 

resulting masking tracks the psychophysical results.

NEW SIMULATIONS

Method

The lateral inhibitory model is based on a linear ar-

ray of 30 neurons, each with an input from a stimulus 

layer, an output to a response layer, and inhibition of 

its nearby neighbors (figure 1). Each neuron sends

inhibition to 6 of its immediate neighbors, 3 on each 

side. The immediate neighbors receive inhibition with 

a strength K1 equal to 0.3 of the neuron’s output. 

The next pair of neighbors receives inhibition with  

K2 = 0.3, and the final pair receives K3 = 0.1. A small 

amount of Gaussian noise is added to each neuron at 

each iteration, simulating neural noise. 

The target was always composed of 4 equally stim-

ulated neurons in the center of the array; the mask 

was 2 groups of 2 neurons flanking the target with

a separation of 1 neuron. Each iteration of inhibitory 

interactions occupies 30 msec of simulated time.

These are the model parameters and stimulus sizes 

used to simulate metacontrast masking with the model 

(Bridgeman, 1978; 2001). Durations of target and 

mask in the current simulations are 1 iteration of inhi-

bition, representing 30msec of real time, except where 

noted below. The program is that of Francis (2003), 

with changes as noted below to simulate novel condi-

tions.

Constant-intensity condition

Object-substitution masking was simulated with a con-

stant mask intensity for each masking curve, so that 

increasing the duration of the mask also increases its 

total energy. Figure 2 (left) shows the result. Masking 

is somewhat stronger than in the strongest masking 

condition of Francis and Hermens (2002) because their 

strongest mask was only 0.25 times as strong as the 

target, whereas in figure 2 the target and mask are of

equal intensity. On the right side of the figure are the

psychophysical data of Di Lollo et al. (1993). 
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The simulation shows a brief period without mask-

ing, as do the psychophysical data, followed by a 

rapid decrease in visibility. The correlational response 

measure can never reach 1, since noise is added 

at each iteration. Thus higher correlations indicate 

greater percept strength, and lower correlations lower 

strength, in an environment where perfect correlation 

is impossible. 

Because the mask’s intensity remained constant, its 

energy became stronger and stronger as the delay of 

Figure 1.
Design of the lateral inhibitory nerve net. Coefficients K1 to K3  define the fraction of a neuron’s output that is relayed to inhibit
neighboring neurons. Stimulus presence is modeled as the activity over the entire 30-neuron net, of which connections of 1 
neuron and a sample of 7 neurons are shown here.

Output(x,t) = Input(x,t-1) - (Sum of Inhibitions) 

< Inputs >   

Neuron
s

< Outputs>   

-.1          -.3         -.3                  -.3          -.3          -.1  coefficients  
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Figure 2.
Object-substitution masking with the lateral inhibitory model, uncompensated for intensity. Left: Simulation, in 30msec incre-
ments, extended to 300msec after target offset. Right: Psychophysical results in 40msec increments to 160msec after target 
offset, replotted from data of Di Lollo et al. (1993). The vertical line in the simulation graph marks the time of the end of the 
psychophysical data.
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mask offset increased. Thus it is not surprising that 

masking becomes stronger with increasing delay – the 

mask became stronger and stronger, while the target’s 

energy remained constant.

Compensated-intensity condition

What happens when the modeled mask intensity is 

compensated, its intensity becoming lower as its du-

ration becomes longer? This compensation procedure 

was used by Di Lollo et al. (2000); apparent mask 

brightness was held constant while duration was in-

creased, taking advantage of the intensity-duration 

reciprocity of Bloch’s law. Any increases in masking 

with mask duration could not be explained by energy 

considerations. Di Lollo et al. (2004) were also suc-

cessful in using this technique to model masking with 

temporally contiguous target and mask, as reviewed 

above.

The critical problem in modeling object-substitu-

tion masking is to simulate changes in the degree 

of attention. The psychophysical work manipulated 

attention by changing the number of simultaneously 

presented masks, only one of which contained a tar-

get, forcing subjects to distribute their attention over 

many masks. Francis & Hermens (2002) manipulated 

attention by adjusting mask intensity without chang-

ing target intensity, a procedure that Di Lollo et al. 

(2002) criticize because mask intensity in the psy-

chophysical work was not changed as attention was 

manipulated. But the lateral inhibitory model already 

contains a parameter that can be used to simulate 

attention. 

The reasoning begins with the fact that responses 

to attended stimuli are normally faster than responses 

to unattended stimuli of the same physical strength. 

The lateral inhibitory model requires that  nerve net 

activity be integrated over several iterations, intro-

ducing a time delay in the neural code that represents 

a stimulus. Because an attended stimulus requires a 

faster response, it would be integrated over fewer 

iterations than a less well-attended stimulus that is 

responded to with a greater latency. Thus the number 

of iterations over which nerve-net activity is collected 

can serve to simulate the degree of attention given 

to a stimulus. At the same time, the model allows 

mask intensity to be compensated as mask duration 

increases.

Object substitution masking was simulated for three 

intervals of integration, 4, 8, and 12 iterations. At each 

duration, the intensity of the mask was adjusted by an 

amount derived from the psychophysical compensa-

tion factors used by Di Lollo et al. (2000).

Results of the simulation are shown in figure 3.

Except for an single point at 30 msec on the 4-itera-

tion curve, simulating high attention, where activity 

0

0.2

0.4

0.6

0.8

1

0 60 120 180 240 300 360

mask off delay

Variable Iterations

strength, 12 iterations
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strength, 4 iterations

Figure 3.
With identical stimulus parameters, simulations are run for 4, 8, or 12 iterations of lateral inhibition. In each case, mask inten-
sity is adjusted as its duration is varied to match psychophysically derived equal-brightness stimulation. Total mask duration 
is 30msec longer than indicated on the horizontal axis, because target and mask appear simultaneously.
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is lower than the corresponding psychophysical func-

tion, the results correspond to those of Di Lollo et al. 

(2000), experiment 1. The simulation of the high-at-

tention condition (open squares in figure 3) has a dip

in visibility followed by a partial recovery, just as the 

psychophysical results showed. 

Since Di Lollo et al. began their delayed mask at 

40msec delay, the deeper dip found here at 30msec 

might have occurred in the psychophysical data as 

well, if sampled at the shorter mask duration. As 

available attentional resources decrease, simulated by 

longer integration time with no change in the stimuli, 

the masking becomes stronger and the partial recov-

ery disappears.

The simulation reproduces the most important 

properties of object substitution masking. In contrast 

to the brief period of no masking seen in figure 2, the

masking functions begin their decline immediately both 

in this simulation and in the psychophysical data. 

Simultaneous offset

One problem in this simulation project is that perhaps 

the brightness compensation procedure is not enough, 

and a mask of long enough duration will always elicit 

strong masking, regardless of other considerations. As 

they work their way through the model nerve net, the 

damped oscillations elicited by the mask might even-

tually dominate the net’s activity at any reasonable 

stimulus amplitude. 

This problem also concerned Di Lollo et al. (2000), 

but it could be resolved. According to those authors, “it 

cannot be said that masking occurs because the brief 

target is overwhelmed by the longer mask (e.g., the 

longer stimulus might be weighted more heavily or be 

given greater prominence in perceptual processing). 

This option is denied by the fact that no matter how 

long the mask or how brief the target, masking never 

occurs if the display begins with the mask alone and 

ends with a simultaneous display of target and mask”. 

This psychophysical finding can also test the lat-

eral inhibitory model. To simulate simultaneous-offset 

masking, the parameters of the Francis (2003) instan-

tiation of the lateral inhibitory model were modified to

allow the mask to begin before the target (figure 4).

A target was always presented for one iteration. The 

mask terminated along with the target, but it began 

either at the same time or at 30, 60 or 90msec before 

the target. 

Masking is constant regardless of an increase in 

mask duration by a factor of four, without brightness 

compensation – mask intensity is the same at all dura-

tions. Modeled percept strength varies over the narrow 

range from 0.55 to 0.52 as the mask duration grows 

fourfold. Thus, in agreement with psychophysical ob-

servations, a strengthening of masking is not inevita-

ble as the mask begins to dominate the total energy in 

the stimulus array. However, there is some masking; 

the model predicts that a careful psychophysical study 

to back up the informal observation of Di Lollo et al. 

(2000) would find some degree of masking at all mask

durations.

DISCUSSION

The prediction of Di Lollo et al. (2000) that an expla-

nation of object substitution masking will require re-

entrant processes appears to have been contradicted, 

as the single-layer lateral inhibitory model can account 

Target 

Target 

Mask 

Mask 

Common-offset Paradigm

Time >

Mask 
30ms

Mask 
120ms

Figure 4.
Paradigm for common-offset masking, showing the longest 
and shortest masks simulated. 

Inhibitory�k�=�0.1

Output�layer

Input�layer

Excitatory

Inhibitory�k�=�0.3

2�layer�interpretation

Synapses

Figure 5.
A two-layer interpretation of the architecture of the lateral 
inhibitory model.

http://www.ac-psych.org


Common-onset masking simulated

39

http://www.ac-psych.org

for most of the psychophysically measured masking 

effects. The model can be interpreted in at least two 

ways, however, with different implications for instan-

tiation in the brain. 

The interpretation of this model until  now has been as 

a single layer, with lateral inhibitory interactions between 

neighboring neurons within that layer. Another interpreta-

tion notes that the model’s neurons can be linked by in-

hibitory interneurons that could just as well be physically 

located in a subsequent processing layer, so that their 

inhibitory actions would be anatomically re-entrant on the 

model’s input neurons (figure 5). This sort of re-entrant

processing is very simple, however, involving a single syn-

apse and a direct return of activity to the original process-

ing layer. It does not require complex interactions with 

other information at more central levels, normally thought 

of as top-down influences on perception.

Now that the behavior of lateral inhibition has been 

investigate in a number of situations, it is appro- 

priate to revisit the mechanisms by which masking 

takes place. At the first iteration of a target stimulus

with the nerve net all of the net’s activity is driven by 

bottom-up connections, so that no masking can take 

place unless the target and mask overlap in space and 

time or a strong mask precedes the target. Lateral 

inhibition has most of its subsequent effect at the 

edges, because the normalization noted at the start of 

this paper  suppresses responses to areas of uniform 

stimulation. After a few iterations, most of the target-

specific activity is coded in regions just beyond the

target’s edges; a mask presented in this region at this 

time interferes with that activity, and masking results. 

If the mask is introduced later, when the target’s rep-

resentation has spread to many neurons, interference 

with the small area of the mask has less effect.  This is 

the standard metacontrast condition.

In object substitution (figure 3), with the briefest in-

tegration condition the interactions are similar to those 

in standard metacontrast; when target and mask off-

set are close together in time, the mask interferes with 

the target’s spreading activity, but with larger mask 

delay the target is already firmly coded in redundant

activity of many neurons when the mask appears. 

Four iterations of activity are not enough to allow the 

mask to dominate. With longer integration intervals, 

however, damped oscillations emanating from target 

offset and mask offset mix together in the network, 

interfering with one another and preventing target-like 

activity from reasserting itself. Since the mask remains 

present, it continues to exert a strong effect on total 

network activity. These qualitative descriptions are no 

substitute for mathematical modeling, of course, but 

hopefully they give a flavor of the sorts of interactions

that lateral inhibition creates.
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