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The mental number line (MNL) is a popular metaphor for magnitude representation in numerical 
cognition. Its shape has frequently been reported as being nonlinear, based on nonlinear response 
functions in magnitude estimation. We investigated whether this shape reflects a phenomenon 
of the mapping from stimulus to internal magnitude representation or of the mapping from  
internal representation to response. In five experiments, participants (total N = 66) viewed stim-
uli that represented numerical magnitude either in a symbolic notation (i.e., Arabic digits) or in 
a nonsymbolic notation (i.e., clouds of dots). Participants estimated these magnitudes by either 
adjusting the position of a mark on a ruler-like response bar (nonsymbolic response) or by typ-
ing the corresponding number on a keyboard (symbolic response). Responses to symbolic stimuli 
were markedly different from responses to nonsymbolic stimuli, in that they were mostly power-
shaped. We investigated whether the nonlinearity could be explained by effects of previous trials, 
but such effects were (a) not strong enough to explain the nonlinear responses and (b) existed 
only between trials of the same input notation, suggesting that the nonlinearity is due to input 
mappings. Introducing veridical feedback improved the accuracy of responses, thereby showing 
a calibration based on the feedback. However, this calibration persisted only temporarily, and re-
sponses to nonsymbolic stimuli remained nonlinear. Overall, we conclude that the nonlinearity is a 
phenomenon of the mapping from nonsymbolic input format to internal magnitude representa-
tion and that the phenomenon is surprisingly robust to calibration.
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INTRODUCTION

The model of the mental number line (MNL) for an internal scale of 

numerical magnitude has been around at least since the 1960s (Moyer 

& Landauer, 1967), but was postulated in its current form by Dehaene 

(1992). Dehaene proposed the MNL to be one element of a model of 

number representation that sought to explain, among other things, 

the ability of neurological patients to make approximate, but not exact 

judgements based on simple verbal input, as well as spatial-numerical 

stimulus-response associations (SNARC—Dehaene, Bossini, & Giraux, 

1993). In this view, the MNL determines the internal mapping between 

numbers and other forms of magnitude. In this article, we use the 

MNL in a similar sense to refer to the internal representation that gives 

rise to an observable response function. Our goal was to investigate 

input-to-representation mappings and representation-to-output trans-

formations that may give rise to particular attributes of this response 

function, in particular its nonlinear shape (Dehaene, 2003). 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The Shape of the Mental 
Number Line and its Relation to 
Nonsymbolic Number

Dehaene (1992) noted that the mapping of nonsymbolic magnitude to 

symbolic magnitude (e.g., numbers) tends to be nonveridical, showing 

systematic underestimation for large magnitudes; a finding that caused 

him to propose a MNL that was compressed and possibly logarithmic 

in shape: response(x)~log(x), with x being the numerical magnitude 

of the stimulus. 

Two things should be noted with respect to the shape of the MNL. 

Firstly, if the MNL refers to the internal representation giving rise to the 

response function, it might still be linear even if the response function 

happens to be nonlinear. A related point is that the origin of both the 

shapes of the MNL and the response function has been much debated 

(Barth & Paladino, 2011; Cantlon, Cordes, Libertus, & Brannon, 2009; 

Cicchini, Anobile, & Burr, 2014; Cohen & Blanc-Goldhammer, 2011; 

Dehaene, 2003; Dehaene, Izard, Pica, & Spelke, 2009; Siegler & Opfer, 

2003), as has the question whether testing one allows inferences about 

the other: This requires knowledge of the mapping between the two 

and of potential response biases. For example, it has been argued that 

in a classic task of locating numbers (or other forms of magnitude) on 

a horizontal line akin to a ruler, participants actually perform a pro-

portion judgement, which, in turn, relies heavily on reference points 

(Barth & Paladino, 2011; but see also Opfer, Siegler, & Young, 2011). 

At the same time, this ruler-like task is one of the few tasks that allow 

a nonsymbolic output of magnitude, which bypasses a nonsymbolic-

to-symbolic transformation that is required for other tasks, such as, for 

example, verbalising magnitude. A recently proposed potential solu-

tion to the problem of proportion judgments is allowing participants to 

go beyond the presented ruler, thereby effectively allowing a judgement 

of multiples (Cohen & Blanc-Goldhammer, 2011; Link, Huber, Nuerk, 

& Moeller, 2014). Another potential confound that may bias responses 

independently of internal representation is the known tendency 

towards the mean, be it of a scale or of previous responses. This has 

recently been brought up as criticism of the notion that a compressed 

response suggests a compressed representation of magnitude (Cicchini 

et al., 2014) and has been applied to other judgements for a long time 

(Haubensak, 1992; Parducci & Perret, 1971).

Secondly, the systematic underestimation in numerical estimation 

for large magnitudes can be explained in several ways that do not as-

sume an exactly logarithmic transformation. A fairly similar view is 

that of the response being a power function of x, which is indeed what 

even proponents of an internal logarithmic MNL have argued (Izard & 

Dehaene, 2008). This will often result in very similar fits to behavioural 

data (indeed, the models may be virtually indistinguishable unless the 

number range is extended, see Opfer et al., 2011) and fit similarly well 

to the corresponding neural activation (Nieder & Miller, 2003). That 

said, the two are based on slightly different classic concepts with slight-

ly different implications, as a logarithmic function implies an additive 

effect when stimulus magnitude is increased by a given factor (Fechner, 

1860), while a power function implies a multiplicative effect (Stevens, 

1957). Alternatively, in designs employing a bounded response, a lin-

ear internal representation may also be compatible with a compressed 

response function purely due to size-dependent variability (see Weber’s 

Law, Fechner, 1860; such a relationship has also been found for trans-

formations between symbolic and nonsymbolic magnitudes, see, e.g., 

Cordes, Gelman, Gallistel, & Whalen, 2001; Dehaene, 1992; Whalen, 

Gallistel, & Gelman, 1999). If variability increases with the response, 

a larger tail of the distribution would be truncated by the bound but 

more so for large responses than for smaller response, resulting in a 

systematic underestimation of large magnitudes (see, e.g., Cantlon et 

al., 2009). 

Finally, it should also be noted that the model of the MNL as the 

basis of manipulation of approximate magnitudes is not universally ac-

cepted. Prominently, McCloskey (1992) and McCloskey, Caramazza,  

and Basili (1985) proposed a model in which a similar role is occupied 

by a semantic, abstract representation that sits between comprehen-

sion and production of numerical magnitudes, but that does not have a 

spatial aspect. However, the degree to which a semantic representation 

is necessary to process numerical magnitudes has been debated (see, 

e.g., Cipolotti & Butterworth, 1995, or, more recently, Gebuis, Gevers, 

& Cohen Kadosh, 2014; Leibovich, Katzin, Harel, & Henik, 2017; for 

reviews about the neural representation of magnitude, see Dehaene, 

Piazza, Pinel, & Cohen, 2003; Nieder, 2016).

Our Study 
Our goals were twofold: Firstly, to investigate which step of an input-

output mapping creates the nonlinear response function in magnitude 

estimation. We were also interested in whether the same shape would 

be achieved not only with symbolic-output measures, but also with dif-

ferent variations of a nonsymbolic number estimation task. To do this, 

we compared number lines obtained from symbolic-to-nonsymbolic 

as well as nonsymbolic-to-symbolic transformations, having partici-

pants map different types of input to the same output measure, as well 

as the same input to different output measures. Secondly, we wanted 

to find out if previous-trials effects and calibration (i.e., learning of an 

input-output mapping) could explain the shape of the responses (e.g., 

by biasing responses towards the mean of previous magnitudes and 

thus the mean of the scale, Cicchini et al., 2014). Further, we wanted 

to test if previous-trial effects existed, and if they did, whether any ef-

fects of previous trials and of calibration would persist between trials 

of different input notations (needing separate input-to-representation 

mappings) as well as between different responses (requiring different 

mappings from representation to output). 

To test this, we employed two tasks of estimating numerosity: a 

nonsymbolic response, in which participants were asked to indicate 

the magnitude represented by the stimulus on a response bar akin to 

a ruler (henceforth referred to as the ruler-based task; this was similar 

to previous studies, e.g., Cicchini et al., 2014; Dehaene, Izard, Spelke, & 

Pica, 2008; Siegler & Opfer, 2003) as well as a task with a simple numer-

ic (symbolic) response, in which participants typed the corresponding 

number on a keyboard (which we will refer to as the typed-response 

task). The ruler-based task was performed with both Arabic digits 

(Experiments 1, 2a-4a) and clouds of dots as nonsymbolic stimulus 
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magnitudes (Experiments 2b-4b, 5). Its primary purpose was to have 

participants estimate magnitudes (as opposed to making binary com-

parison judgements, which may produce somewhat different effects: 

see Gebuis & Reynvoet, 2012) in a way that did not rely on verbal or 

symbolic representation (i.e., numbers). The stimuli were drawn ran-

domly from magnitudes between 1 and 200. For nonsymbolic stimuli, 

this implies that most numbers would be in a range where participants 

would be unable to instantly perceive the precise magnitude (subitiz-

ing, which participants are able to do with numbers up to 4, or per-

haps even up to 7; see Mandler & Shebo, 1982; Trick, 2008; Trick & 

Pylyshyn, 1994) and, since we also imposed a time constraint on the 

task, also be unable to count dots even for relatively small arrays. This 

reflected the fact that the main interest of our study was in approximate 

estimations of magnitude—that is, the processing of magnitudes that 

could not be subitized. 

We also varied features of the response bar between experiments to 

rule out alternative explanations (e.g., we employed both numerosities 

and numbers as endpoints). The typed-response task was performed 

only in Experiment 5. In this experiment, participants received both 

veridical as well as perturbed feedback in order to investigate the 

mechanisms behind a possible calibration of the MNL. For an over-

view of all conditions and experiments, see Table 1.

For each experiment and each type of stimulus and response, we fit 

separate linear, logarithmic, and power functions to assess the shape of 

the response function. Our predictions were as follows: We expected 

the response function for symbolic stimuli (Arabic digits) to be almost 

linear and the response function for nonsymbolic stimuli (clouds 

of dots) to be better fitted through a logarithmic or power-function 

model (Dehaene, 1992). We expected this relation to hold true for both 

the ruler-based task (Experiments 1-4) and the typed-response task 

(Experiment 5). We also expected dependencies between consecutive 

trials. The presence of such serial dependencies between different types 

of trials (i.e., a symbolic-stimulus trial followed by a nonsymbolic-

stimulus trial or vice-versa) would speak for a calibration of the map-

ping from internal magnitude to the response, since this would mean 

calibration generalizing across different input types. The absence of 

such between-trial-type serial dependencies would indicate stimulus-

specific calibration and, thus, calibration of input-to-representation 

mapping. These two possibilities were investigated in more detail in 

Experiment 5.

EXPERIMENT 1 (PILOT): TESTING THE 
RESPONSE FUNCTION

In this pilot experiment, we tested the response function of the ruler-

based task. Participants clicked on a response bar displayed horizontal-

ly on a computer screen. A similar method has been used in numerous 

experiments (e.g., Cicchini et al., 2014; Dehaene et al., 2008; Siegler & 

Opfer, 2003). However, since we wanted to verify whether this method 

and its implementation was not in itself susceptible to artefacts, we 

tested it in Experiment 1 in the simplest, most straightforward ver-

sion we could find: mapping numbers written in Arabic digits to a 

horizontal ruler marked on the left and on the right by numbers in 

the same notation (see Figure 1). A relatively linear response function 

close to unity would indicate that estimating magnitudes in such a way 

does not per se produce distorted responses. We tested if responses 

would be influenced by stimuli presented in previous trials, with “odd-

ball blocks” of deliberately imbalanced magnitudes being included to 

maximize the discrepancy between trials.

Methods

PARTICIPANTS
Six participants (age range: 25 to 39 years, Mage = 32.2, 4 females) 

took part in the experiment. All participants were volunteers taking 

part without compensation, consisting of graduate students and fac-

ulty members of the Department of Psychology at the University of 

Hamburg. In this and all following experiments, participants gave writ-

ten informed consent and their data were protected in accordance with 

the 1964 Declaration of Helsinki.

TABLE 1.  
Tasks and Stimuli Used in Experiments

Experiment Stimulus Response Ruler 
endpoints Comment

Exp. 1 symbolic ruler-like 
bar

symbolic

Exp. 2a symbolic
ruler-like 

bar
symbolic

Exp. 2b nonsymbolic symbolic

Exp. 3a symbolic
ruler-like 

bar

symbolic
starting 
position 
random

Exp. 3b nonsymbolic nonsymbolic
starting 
position 
random

Exp. 4a symbolic

ruler-like 
bar

symbolic

endpoint 
mapping 

& starting 
position 
random

Exp. 4b nonsymbolic nonsymbolic

endpoint 
mapping 

& starting 
position 
random

Exp. 5a nonsymbolic
ruler-like 

bar

typed 
response

nonsymbolic
with 

feedback, 
otherwise 

like 3b

Exp. 5b nonsymbolic none with 
feedback

Note. Details about the ruler-like response bar are described in the Apparatus
section. Detail about the symbolic/nonsymbolic endpoints of the ruler given in 
the Results and Discussion subsection in Experiment 3. For each experiment, 
Conditions A and B were presented in a blocked design that included both 
separate and mixed blocks. For Experiment 4, endpoint mapping—that is, 
which point on the number line each endpoint of the ruler corresponded 
to—could be left-small/right-large (in half the trials) or right-large/left-small 
(in the other half).
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APPARATUS
Sitting in front a 21 in. LCD monitor (effective screen diagonal: 52 

cm), participants were presented with a centrally displayed number 

(written in Arabic digits, font size 60 px, approximately 2° of visual 

angle). All stimuli were black, presented against a white background. 

Below the number, a black response bar was displayed (located near 

the bottom of the screen, centrally on the x-axis, approximately 20° 

of visual angle). In the middle of the response bar was a black mark 

(a square of 20 px × 20 px, corresponding to approximately 6 mm × 

6 mm). This mark could be moved horizontally by the participants 

using a standard USB mouse. Participants were asked via on-screen 

instructions to move the mark to the location that they perceived as 

the position the number belonged to and then click the mouse button 

to register this position (see Figure 1). 

PROCEDURE
In each trial, the number was displayed until the participant per-

formed the mouse click, after which a fixation cross appeared for on av-

erage 500 ms (this interval was defined as 400 ms + a pseudo-random 

value from an exponential distribution with M = 100 ms) until the next 

trial. At the start of the experiment, a response bar was presented on the 

screen below the instructions to let participants familiarise themselves 

with the bar and the adjustment mark for as long as they liked, while 

clicking was disabled. All experiments were implemented in a custom 

MATLAB program using Psychtoolbox 3 (Kleiner et al., 2007). 

To be able to verify the results from our models and to enable easier 

detection of previous-trial effects, the experiment was conducted in a 

blocked design, with one block containing pseudo-random numbers 

(in which stimuli were randomly drawn from numbers 1-200, with 

no duplicates), as well as two oddball blocks. These were included to 

test specifically the degree to which the responses would be influenced 

by the trials directly preceding them by maximizing the discrepancy 

between magnitudes in oddball trials and the rest of the trials in such 

blocks: In these blocks, either were 87.5% of trials with high numbers 

(from the top third, 134-200) and 12.5% of trials with numbers from 

the opposite end of the range (1-66) or vice-versa for high and low 

numbers. An influence on the response by previous trials, and, indeed, 

the range of stimuli, is often found in repeated-measures designs 

(Haubensak, 1992; Parducci & Perret, 1971) and has been proposed 

specifically for processing of nonsymbolic numbers (Cicchini et al., 

2014). All participants started with a random-number block, followed 

by two oddball blocks. The order of oddball-up and oddball-down 

blocks was counterbalanced between participants. Each block consisted 

of 64 trials, resulting in a total of 192 trials for the whole experiment.

 DATA ANALYSIS 
Our main dependent variable was the location of the click on the 

response bar. This was coded as the relative position on the response 

bar, with 0 corresponding to a click on the leftmost end of the response 

bar and 1 to a click on the rightmost end. Responses given after less 

than 500 ms were excluded. Outliers were excluded according to the 

following method: For each presented magnitude x we linearly inter-

polated the ”expected” response based on responses to stimuli [x − 10, 

x + 10] (truncated for responses near the top or bottom end of the 

stimulus range). We determined the SD of the residuals of the linear 

interpolation for all responses excluding the response to x. Responses 

with a distance of more than 3 SD from the expected response were 

considered outliers and excluded. In Experiment 1, this applied to 28 

trials (2.4% of all trials). 

Responses, aggregated by numeric values, were fitted to three mod-

els: a linear function (y = a + b × x), a logarithmic function (y = a + b × 

log[x]), and a power function (y = a × x^b), with x being the numeric 

value of the stimuli and y the response of the participants. Note that the 

intercept for the power function was fixed at 0, since (a) we wanted to 

fit the same number of parameters in all models, and (b) this form is 

the classic power function common in research on human perception 

(Stevens, 1957; Teghtsoonian, 1965).

Coefficients for the models were fit for each participant. The best-

fitting model type, as indicated by the lowest Akaike information 

criterion (AIC; Akaike, 1974; see Burnham & Anderson, 2004, for 

guidelines on the interpretation), was selected. This model was then 

used to investigate if previous-trial effects would explain more variance 

in the data. To do this, we fit a linear, logarithmic, or power model to 

the trial-by-trial (i.e., unaggregated) data and compared the fit of this 

simple model to a model that included the numeric magnitude in the 

previous trial as an additional predictor. We also conducted a repeated-

measures analysis of variance (ANOVA) with relative error—defined 

as: (response[x] − x)/x—as the dependent variable and the 3-level 

factor oddball (up/down/no oddball) to investigate if oddball trials 

displayed a systematically different error to other trials, that is, whether 

responses would be affected by preceding trials. Greenhouse-Geisser 

correction (Greenhouse & Geisser, 1959) was applied in all situations 

where sphericity could be violated. Bonferroni-Holm correction was 

applied to all t tests (Holm, 1979).

RESULTS AND DISCUSSION
We found that the data were fit best by a linear model of  

y = 1.07x – 7.90, explaining 99% of the variance. Including the mag-

nitude presented in the previous trial created a slightly better fit  

(ΔAIC = −2.71), with the predictor having a negative weight  

(b = −0.0139). Detailed descriptions of all models can be seen in Table 

2, visualisations of the models can be seen in Figure 2.

Our ANOVA revealed a main effect of the factor oddball,  

F(2, 10) = 28.01, pGG < .001, eGG = .83, although post-hoc t tests (compar-

ing relative error in oddball trials to relative error in all range-matched 

nonoddball trials; this range-matching of magnitudes was done only 

for the t tests, and not for the data included in the ANOVA) indicated 

that while descriptively, oddball trials where the oddball was smaller 

produced a smaller response than nonoddball trials and vice-versa for 

oddball-trials ”upwards”, these were not statistically significant differ-

ences, t(5) = −1.228, p = .274 and t(5) = 1.153, p = .301, respectively.

The main goal of Experiment 1 was to function as a pilot of sorts 

and ascertain that the mapping of numbers to our ruler-like response 

bar was relatively accurate. This was the case: The mapping was almost 
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perfectly linear, and the slope of the model was close to 1. Thus, we 

felt confident using this condition as a control in the following experi-

ments. With regards to previous-trial effects, a positive coefficient in 

the model for previous magnitude indicates that relatively larger previ-

ous trials would lead to somewhat larger responses, while the analysis 

of oddball trials showed no clear pattern. These were exploratory 

analyses, however, and we aimed to test this in the experiments that 

followed.

EXPERIMENT 2, 3, AND 4: NONSYMBOLIC 
MAGNITUDE AND ITS RELATION TO 
SYMBOLIC MAGNITUDE 

Experiments 2, 3, and 4 incorporated not only symbolic, but also 

nonsymbolic magnitudes as stimuli. That is, half of the trials consisted 

of participants being presented with Arabic digits and clicking on the 

respective position on the response bar, the other half consisted of the 

same task but with participants being presented with clouds of dots 

instead of digits. They were instructed to assess the number of dots in 

these clouds and select the appropriate location on the response bar in 

the same way as with Arabic digits.

The experiments differed only in subtle, but nevertheless important 

details (see Figure 1 and Table 1). Experiment 2 employed a response 

bar with symbolic endpoints (i.e., Arabic digits) for both symbolic and 

nonsymbolic stimuli. These were presented in a blocked design that in-

cluded both blocks of one notation only and mixed blocks containing 

both notations. This gave us a first idea if our method was appropriate 

for nonsymbolic stimuli and whether our results would be in line with 

the literature. In Experiments 3 and 4, we attempted to rule out poten-

tial confounds that might have influenced our results in Experiment 2, 

and test whether the pattern of results was robust to small variations in 

the experimental design. In Experiment 3, we employed a response bar 

with endpoints defined by nonsymbolic numerosities for nonsymbolic 

stimuli (so that the mapping from nonsymbolic magnitude to output 

did not involve a symbolic notation). In Experiment 4, we used the 

design of Experiment 3, but flipped around the response bar in half 

of the trials, such that the upper end would now be on the left side. 

We also randomised the starting position of the adjustment mark on 

the response bar, which had previously always been in the middle, to 

prevent participants from learning to execute movements rather than 

FIGURE 1.

Screenshots from each of our experiments. Top row, left = Experiments 1A-4A, ruler-based response, symbolic stimuli, symbolic 
endpoints; Middle = Experiment 2B, ruler-based response, nonsymbolic stimuli, symbolic endpoints; Right = Experiment 4B, ruler-
based response, nonsymbolic stimuli, nonsymbolic (and sometimes flipped) endpoints; Right column, middle = Experiment 5A, 
ruler-based response, nonsymbolic stimuli, nonsymbolic endpoints; Bottom = Experiment 5B, typed response to nonsymbolic 
stimuli. The line asking for and displaying the response is magnified for visibility in this figure. The word Anzahl is German for num-
ber or numerousness; Bottom left, big panel = Experiments 3B and 5A, ruler-based response, nonsymbolic stimuli, nonsymbolic 
endpoints. See also Table 1 for a summary of the conditions.
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performing an estimate for each trial. Each participant took part in 

only one of the Experiments 1-4. The purpose of these experiments 

was to investigate whether (a) the typical nonlinear MNL shape with 

underestimation for relatively large numbers could reliably be found 

in number-line tasks with symbolic and nonsymbolic input, even 

when controlling for the above-mentioned possible confounds of the 

ruler-based task, and (b) whether there would be previous-trial effects 

within, or even between trial-types.

Experiment 2: Symbolic and 
Nonsymbolic Magnitude on a 
Standard Response Bar
In Experiment 2, we introduced nonsymbolic stimuli in addition to 

symbolic stimuli (numbers). Thus, we were able to compare the re-

sponses in the same task – that is, responses on a ruler-like response 

bar – for symbolic and nonsymbolic stimuli. We expected our design 

with these stimuli to replicate results obtained in previous studies using 

a similar design that showed a markedly nonlinear response function 

(e.g., Dehaene et al., 2008; Siegler & Opfer, 2003), as well as effects of 

previous-trial magnitudes (Cicchini et al., 2014). With respect to the 

latter, we also wanted to investigate whether the effect would persist 

when nonsymbolic stimuli were preceded by symbolic stimuli (i.e., in 

different input-type dyads). This would be expected if previous-trial 

effects were driven by a calibration of the mapping from internal repre-

sentation to output, but not if previous-trial effects show a calibration 

of the input-to-representation mapping.

METHODS
Participants. Eight participants (students of University of 

Hamburg, aged between 19 and 26 years, Mage = 22.9; 6 females) were 

tested. Each participant received course credit or €8/hr.

Apparatus. The same setup as in Experiment 1 was used. The 

main difference was that we employed not only symbolic but also 

nonsymbolic stimuli. These nonsymbolic stimuli were generated using 

a modified version of a program developed by Gebuis and Reynvoet 

(2011) that will generate clouds of dots and was designed to keep 

visual stimulus properties uninformative about the number of dots in 

a certain design. In our design, keeping visual dimensions completely 

uninformative about number would have been impossible, since non-

symbolic magnitude is ultimately defined by visual features, and all of 

our stimuli differed in magnitude. Thus, we settled for a compromise 

in which the visual features total area of the clouds of dots (r = .41), 

density (r = .28), surface area of the dots (r = .57) and circumference 

of the cloud (r = .77) were all imperfectly correlated with nonsymbolic 

magnitude.

Procedure. As in Experiment 1, participants indicated the position 

of a symbolic or nonsymbolic stimulus on a ruler-like bar presented 

horizontally between the numbers 1 and 200 (in all tables and figures, 

the symbolic condition is indicated as Exp. 2A and the nonsymbolic 

as Exp. 2B; the same nomenclature is used for Experiments 3 and 4) 

and were instructed to click on the location on the ruler/like response 

bar where they thought each current stimulus belonged. We now in-

cluded a time limit of 3 s. When this was exceeded, an error message 

("Please answer within 3 seconds!" in German) appeared on the screen. 

Symbolic and nonsymbolic stimuli were presented in a counterbal-

anced blocked design that contained single-type random magnitude 

blocks, single-type oddball blocks, and mixed-type oddball blocks. 

Blocks were randomised in the same manner as in Experiment 1, with 

the order of symbolic, nonsymbolic, and mixed blocks counterbal-

anced between participants. The random-number block was always 

the first for each stimulus type and the mixed blocks were always at the 

end of the experiment. This gave us 8 possible permutations: (oddball 

up first/oddball down first) × (nonsymbolic first /symbolic first) × 

(mixed, nonsymbolic oddballs first) × (mixed, symbolic oddballs first). 

In total, participants completed 11 blocks of 64 trials each, for 704 trials 

overall.

Data analysis. The modelling mirrored that from Experiment 1, 

with the addition of stimulus type as another independent variable. 

Because of this, we fit the same three models (linear, logarithmic, 

power) to responses to each of the stimulus types (symbolic and 

nonsymbolic). To be able to investigate previous-trial effects between 

stimulus types, we added an interaction term to the previous-trial 

model that allowed for a differential effect of ”same type” or ”different 

type” previous trials.

RESULTS AND DISCUSSION
A total of 114 trials (2%) had to be removed, as participants had 

not given an answer or answered too quickly (i.e., in less than 500 ms).  

A further 83 trials (1.5%) were excluded as outliers (see the Data 

Analysis section in Experiment 1). Of the remaining data, trials that 

contained symbolic stimuli and trials that contained nonsymbolic 

stimuli were each separately fitted to three models (linear, logarithmic, 

power model; see Figure 2). For the symbolic stimuli, the best fit was 

again a linear model, y = 1.06x − 8.23; R² = .99. The same was true for 

the nonsymbolic stimuli, although the model was markedly different, 

y = 0.69x + 17.88, and the fit was not as good, R² = .91. The data were 

fitted better when the model included the previous magnitude as a pre-

dictor with a positive weight (ΔAIC = −7.65, b = 0.0344). Introducing 

an additional interaction between previous trial magnitude and previ-

ous trial type improved the fit marginally (ΔAIC = −2.01) and revealed 

that the weight for previous trials was somewhat smaller when the trial 

type was different to the current trial (bdiff = 0.0041, bsame = 0.0380).

A 2 × 2 × 3 (Trial-type [symbolic,  nonsymbolic] × Block-type 

[mixed, homogenous] ×  Oddball [up, down, no oddball]) factor 

repeated-measures ANOVA on relative error indicated only one inter-

action: Trial-type × Oddball (F[2, 14] = 19.26, pGG = .003, eGG = .53). All 

other effects were nonsignificant (p > .12 in each instance). Post-hoc t 

tests gave only tentative evidence, as only comparing upwards oddballs 

with range-matched regular trials gave some indication of an effect, 

t(7) = −3.82, p = .007, p > .2 in all other instances.

To summarise, our results from Experiment 2 also showed that 

ruler-based responses to symbolic magnitudes (numbers) were almost 

perfectly linear and veridical. Responses to nonsymbolic magnitudes 

showed the characteristic underestimation for relatively large numbers, 
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Participants were again instructed to click on where they thought the 

stimulus belonged in the response bar, based on the number of dots 

in it.

RESULTS AND DISCUSSION

We removed 78 trials (1.3%) because of a lack of a valid answer 

or for being too quick, and 72 trials (1.3%) as outliers. The remaining 

data were modelled in the same fashion as in Experiment 2, indicating 

a linear model as the best, and once again near perfect, fit for symbolic 

stimuli, y = 1.07x − 10.74; R² = .99. Responses to nonsymbolic stimuli 

were fit best by a power model, y = 12.66 × x^0.48, which explained 

82% of the variance. The data were not fit better when previous number 

was included as a predictor, ΔAIC = 0.83, b = 0.0175, but slightly bet-

ter when accounting for previous number split up by previous trial 

type, ΔAIC = −1.66, bdiff = −0.0283, bsame = 0.0233. The usual 2 × 2 × 

3 ANOVA on relative error revealed no interactions between factors 

(p > .13 in each instance) and no main effects either (p > .16 in each 

instance). However, when oddball trials were tested against magni-

tude-matched nonoddball trials, this showed a significant difference 

between upwards oddball trials with nonsymbolic stimuli, t(7) = −3.90, 

p = .006, while other differences were not significant when correcting 

for multiple comparisons (downwards oddballs, nonsymbolic: t[7] = 

2.55, p = .038; upwards symbolic: t[7] = −2.61, p = .035; downwards 

symbolic: t[7] = 0.86, p = .421), although they all pointed in the same 

direction: Oddball trials tended to err more towards the middle than 

other trials in the same number range, consistent with the fact that 

previous trials had a positive weight in the model.

Again, we found a virtually veridical response function to sym-

bolic magnitudes, with a notable underestimation and previous-trial 

but, interestingly, still were fit better by a linear function than a loga-

rithmic or power function.  Additionally, larger magnitudes displayed 

in previous trials correlated with slightly larger responses on a given 

current trial.

Experiment 3: Symbolic and 
Nonsymbolic Magnitude on 
Response Bars with Symbolic and 
Nonsymbolic Endpoints
A potential drawback of Experiment 2 was its use of numeric endpoints, 

which means that one could argue that the version of the task we em-

ployed, and thus the output measure, was in fact not really nonsym-

bolic; that is, the stimuli would be compared to symbolic magnitudes 

(the endpoints) in order to find the correct location on the response 

bar. To remedy this, we conducted Experiment 3, in which we used 

nonsymbolic magnitudes as endpoints to the response bar.  In all other 

respects, the experiment was identical to Experiment 2. Thus, we also 

expected the results to be largely similar to those in Experiment 2.

METHODS

Again, we recruited eight participants from the same pool as in 

Experiment 2 (aged between 20 and 29 years, Mage = 23.9; 6 females). 

As in Experiment 2, all participants indicated the position of a sym-

bolic or nonsymbolic stimulus on a response bar. The only difference 

to Experiment 2 was that the endpoints of the response bar for the 

nonsymbolic stimulus now were a single dot on the left and a cloud 

of 200 dots on the right instead of Arabic digits (see Figure 1). These 

endpoints were always the same (i.e., not rendered anew for each trial) 

and were rendered using the same script that was used for the stimuli. 

FIGURE 2.

Data from Experiments 1-4, with fitted linear, logarithmic, and power models. Left to right = Experiments 1-4; Top row = symbolic 
stimuli. Bottom row = nonsymbolic stimuli. For details on the experiments, see Table 1.
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dependency present for responses to nonsymbolic magnitudes. This 

was fit best by a power model. Responses to nonsymbolic stimuli were 

generally not predicted as well by the actual magnitude presented, as in 

Experiment 2 (see Table 2), perhaps indicating that the ruler-based task 

was more difficult with nonsymbolic endpoints. Despite the fact that 

the preferred model was a different one compared to Experiment 2B, 

with respect to other key features—for example, over-/underestimation 

for small/large numbers, respectively—the response function was quite 

similar to the response function in Experiment 2B (see Figure 2).

Experiment 4: Symbolic and 
Nonsymbolic Magnitude with Left/
Right Flipped Endpoints
In Experiment 4, we wanted to preclude that what participants had 

been giving were stereotyped responses. To prevent them from us-

ing such a strategy, we slightly increased the difficulty of the task and 

introduced another input-response mapping by (a) flipping randomly 

the response bar in half of the trials, thus displaying the largest mag-

nitude on its left side and the smallest magnitude on the right and (b) 

randomly varying the starting position of the adjustment mark in each 

trial. In essence, this experiment was done to preclude motor learning 

of responses as a confound, so we again expected a similar pattern of 

responses as we found in Experiments 2 and 3.

Flipping the response bar also reversed the standard right-large re-

lationship between space and magnitude that is encountered in many 

everyday situations (see, e.g., Dehaene et al., 1993; Fischer & Shaki, 

2015). While we would not expect these associations to bias responses 

in our task when they are congruent with the response bar, finding 

a similar response function with a flipped response bar would speak 

to the robustness of our findings. There may also be hemispheric dif-

ferences in the representation of space: Consistently with this notion, 

van der Lubbe, Schölvinck, Kenemans, and Postma (2006) reported a 

more finely-grained spatial resolution for the left field. Such a mecha-

nism could contribute to both the higher observed variability, and 

the ”flatter” response function for larger numbers, if these are always 

responded to in the right field.

METHODS

Eight participants from the same pool as in Experiments 2 and 3 

(aged between 20 and 32 years, Mage = 25.7; 4 females) took part in 

the experiment. The task was mostly the same as in Experiment 3, 

but in 50% of the trials (randomly distributed within each block), the 

response bar was flipped, such that the lower end was on the right and 

the higher end was on the left. Additionally, the starting position for 

the adjustment mark was randomized, such that the mark was equally 

likely to appear anywhere on the response bar at the start of each trial. 

Participants were given 4 s to respond.

RESULTS AND DISCUSSION

We had to remove 41 trials (0.7%) for a lacking valid answer or 

being outside the allowed response times, and 99 trials (1.8%) as out-

liers. Modelling the responses to symbolic stimuli, the best model was a 

linear fit of y = 1.02x − 6.26, explaining 99% of the variance (see Figure 

2). The responses to nonsymbolic stimuli were once again fit best by a 

power model (y = 32.50 × x^0.26; R² = .54). Including the magnitude 

of the previous trial did not improve the fit (ΔAIC = 0.99), although 

including an interaction term of Previous-trial Magnitude × Previous-

trial Type did (ΔAIC model with interaction vs. simple model: −5.19), 

indicating that previous trials actually had a negative weight if they 

were of a different type (bdiff = −0.0777), and much smaller negative 

weight when they were of the same type (bsame = −0.0061). The stand-

ard 2 × 2 × 3 repeated-measures ANOVA on relative error revealed a 

main effect of oddball, F(2, 14) = 20.20, pGG = .003, eGG = .51, but no 

other main effect (p > .6 in each instance), with a statistically significant 

interaction of Block-type × Trial-type, F(1, 7) = 7.23, p = .031, and the 

three-way interaction Oddball × Block-type × Trial-type, F(2, 14) = 

7.89, pGG = .025, eGG = .51. No t test comparing oddball trials to range-

matched regular trials indicated any significant difference (p > .6 in 

each instance).

Once again, responses to symbolic stimuli were fit best by a linear 

function close to unity, while responses to nonsymbolic stimuli resem-

bled a power function. That is, results were similar to those obtained 

in Experiments 2 and 3, even when the experiment prevented par-

ticipants from learning mouse movements as opposed to considering 

the desired location of the click. The fact that these results once again 

show an underestimation and a relatively shallow response function 

for magnitudes larger than the mean (100) also excludes the possibil-

ity that the smaller increments in responses for higher numbers are 

confounded with differences in spatial resolution of the left and right 

field (van der Lubbe et al., 2006).

Discussion of Experiments 2-4
Two findings appeared robustly in all experiments: Responses to 

symbolic stimuli had an almost perfectly linear shape, and responses 

to nonsymbolic stimuli tended to overestimate low magnitudes and 

underestimate higher magnitudes. The former is readily explained by 

the proficiency of participants: Despite having limited time available, 

the task was overall not very difficult when the stimuli were symbolic 

magnitudes. Responses to nonsymbolic stimuli, on the other hand, 

mirror known patterns of nonlinearity (Dehaene, 2003; van Oeffelen & 

Vos, 1982) that are robust across different variants of the task. Notably, 

the responses were in most cases fit better by a power function than 

by a logarithmic function (see Table 2; note that the linear model out-

performed both others in Experiment 2), which is corroborated by the 

fact that when plotted in a log-log graph, the functions appear roughly 

equivalent (see Figure 3). These results are also quite compatible with 

Dehaene’s notion of a logarithmic number line (Dehaene, 1992) with 

an output grid transformation (Izard & Dehaene, 2008), in which the 

mapping from somewhat categorical internal representation to re-

sponses can be stretched or compressed through calibration. Since in 

each case, previous trials (at least of the same input type) influenced 

the current trial, they are also compatible with a dynamic encoding 

mechanism like the one of Cicchini et al. (2014), who proposed the 

shape of the MNL to be due to each trial representing a weighted 
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Experiment 3 and nonexistent in Experiment 4. These findings from 

the latter two experiments also indicate that in our design, effects of 

previous trials alone were unlikely to be the sole or even main cause 

of the response function’s shape, as it was similarly nonlinear here as 

in Experiment 2.

EXPERIMENT 5: DOES CALIBRATION 
GENERALIZE BETWEEN RESPONSES TO 
SYMBOLIC AND NONSYMBOLIC STIMULI?

In our final experiment, we sought to explore whether the responses 

to nonsymbolic stimuli could be linearized (i.e., correctly calibrated) 

through feedback, and if this could be done for responses to symbolic 

and nonsymbolic stimuli independently. This served the broader pur-

pose of providing a stronger test of whether the observed shape of the 

TABLE 2.  
Linear, Logarithmic, and Power Models Fit to Data from All Experiments

Exp Condition lin log Power Previous trial 
weight

Previous trial 
weight by trial type

1 Symbolic stimuli 1.07x − 7.90
R2 = .99

60.85 × log(x) − 163.28
R2 = .80

0.27 × x^1.27
R2 = .98

b = −0.0139
ΔAIC = −2.71 -

2a Symbolic stimuli 1.06x − 8.23
R2 = .99

60.23 × log(x) − 161.93
R2 = .81

0.32 × x^1.23
R2 = .99

b = 0.0344

ΔAIC = −7.65

bsame = 0.0380
bdiff = 0.0041

ΔAIC = −9.662b
Nonsymbolic stimuli 0.69x + 17.88

R2 = .91
42.67 × log(x) − 96.12
R2 = .87

1.10 × x^0.94
R2 = .89

3a
Symbolic stimuli 1.07x − 10.74

R2 = .99
60.15 × log(x) − 163.82
R2 = .79

0.31 × x^1.23
R2 = .99

b = 0.0175

ΔAIC = 0.83

bsame = 0.241
bdiff = −0.0283

ΔAAC = v1.663b Nonsymbolic stimuli 0.58x + 49.50
R2 = .77

37.34 × log(x) − 53.17
R2 = .80

12.66 × x^0.48
R2 = .82

4a Symbolic stimuli 1.02x−6.26
R2 = .99

58.02 × log(x) − 154.57
R2 = .79

0.43 × x^1.16
R2 = .99

b = −0.0193

ΔAIC = 0.99

bsame = −0.0061
bdiff = −0.0777

ΔAIC = −5.194b
Nonsymbolic stimuli 0.36x + 67.13

R2 = .50
23.04 × log(x) + 3.09
R2 = .52

32.50 × x^0.26
R2 = .54

5a

response bar, pre-FB

response bar, FB

response bar, post-FB

0.65x + 32.13
R2 = .84

0.82x + 17.59
R2 = .93

0.79x + 24.86
R2 = .93

41.03 × log(x) − 80.84
R2 = .78

59.92 × log(x) − 163.15
R ² = .88

49.29 × log(x) − 109.54
R2 = .91

4.69 × x^0.66
R2 = .85

2.97 × x^0.77
R2 = .94

1.56 × x^0.91
R2 = .91

b = 0.0424
ΔAIC = −11.43

b = 0.2398
ΔAIC = −314.70

b = 0.0440
ΔAIC = −26.9

-

5b

Number response, 
pre-FB

Number response, FB

Number response, 
post-FB

0.50x + 16.13
R2 = .88

0.84x + 8.59
R2 = .94

0.64x + 21.63
R2 = .89

30.91 × log(x) − 67.22
R2 = .83

59.77 × log(x) − 170.18
R² = .86

40.20 × log(x) − 87.54
R2 = .86

1.91 × x^0.77
R2 = .89

2.10 × x^0.83
R² = .94

2.10 × x^0.81
R2 = .90

b = 0.0579
ΔAIC = −35.32

b = 0.3258
ΔAIC = −463.97

b = 0.0648
ΔAIC = −39.36

Note. Bold indicates the best-fitting model. ΔAIC given relative to the simplest model. FB = feedback, AIC =  Akaike 
information criterion (Akaike, 1974; Burnham & Anderson, 2004). For details on the conditions see Table 1 and Figure 1.

combination of an estimates of the current and of previously presented 

magnitudes. Notions such as a linear response function with scalar 

variability, however, can be dismissed; while the variability does reach 

a ceiling of sort in ruler-based tasks (see Figure 3), this model would 

predict underestimation for higher numbers, but not overestimation 

for smaller numbers.

For the explanation of dynamic encoding mechanisms based on 

previous stimuli to be plausible, it is a prerequisite that sequential 

dependencies exist, which was the second question our experiments 

sought to answer. Indeed, this was the case, as the fitting of previous-

trial models found a positive relationship between the magnitude of 

the previous trial and the response in the current trial, which was 

consistent with the analysis of oddball trials. Note that the weights for 

previous-trial magnitude differed between experiments: A weight of 

over .2, as we saw in Experiment 2, is rather large when compared to 

the literature (Cicchini et al., 2014), whereas such effects were small in 
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PROCEDURE

All participants completed two numerosity-estimation tasks: 

a ruler-based task like the one used in Experiment 3, and a simple 

typed-response task, in which participants entered their estimate via 

a standard computer keyboard. Stimuli were the same nonsymbolic 

stimuli as in Experiments 2, 3, and 4. Participants were again allowed 

4 s to respond in the ruler-based task. The same time limit was set for 

the typed-response task; however, due to a programming error in the 

MATLAB program, the timer was reset when participants started typ-

ing, in effect giving them 4 s to start typing, and 4 s thereafter (mean 

response times in this task were 2570 ms, with an SD of 702 ms).

For both the ruler-based task and the typed-response task, we 

included one middle block each where participants received feedback 

about the correctness of their response. Thus, each participant com-

pleted three blocks—prefeedback, feedback, postfeedback—for both 

the ruler-based task and the typed-response task. This feedback could 

be either veridical (reflecting a 1-to-1 mapping of stimulus to the posi-

tion on the response bar or the number to be entered), or distorted by 

an amount of either +15 or −15. This feedback was consistent across all 

trials within one block, but varied independently for the two tasks, and 

feedback conditions were counterbalanced between participants so 

that one third of participants was assigned to each feedback condition 

in each task. The order of tasks was also counterbalanced. Feedback 

in the typed-response task was presented as a red number appearing 

on the screen once the participant hit the return key, to the right of 

the number the participant had just entered. In the ruler-based task, 

feedback was given through a red square mark of the same size as the 

adjustment mark, appearing on the horizontal bar at the location cor-

responding to the correct magnitude (or the correct magnitude +15 

/ −15). Participants received 10 practice trials with feedback on a re-

sponse bar right before the ruler-based task, along with instructions on 

responses is better understood as a phenomenon of mapping input-to-

representation or representation-to-response by comparing sequential 

effects between stimulus types to calibration effects between tasks. To 

this end, we conducted an experiment in which participants conducted 

both a ruler-based task like the one described in Experiment 3, but 

with randomised starting positions, and a classic numerosity-judge-

ment task in which they typed in the estimated number of dots for 

each stimulus (here called the typed-response task, see the Our Study 

section in the Introduction). Both tasks included feedback blocks to 

allow participants to calibrate their responses, with feedback being ei-

ther (a) veridical, (b) systematically lower, or (c) systematically higher 

than the actual magnitude. This feedback was given independently for 

each task, thus allowing us to investigate not only the effect of feedback 

in each task on responses in the same task, but also its influence on 

responses in the other task. Knowing whether feedback effects would 

generalize between tasks with the same stimuli but different responses 

would allow us to see whether calibration through feedback would 

influence the mapping from the stimulus to the internal magnitude 

estimate, or rather something else (most likely the mapping from the 

internal estimate to the response).

Methods

PARTICIPANTS

Due to the larger number of conditions, as well as to enable us to 

test our predictions more conclusively in a single experiment, we in-

creased the number of participants to a total of 36 (Mage = 24 years, age 

range 18 to 36; 26 females). These were again recruited from the same 

participant pool as in the Experiments 2-4.

FIGURE 3.

Exploring variability in responses to nonsymbolic stimuli. Left = responses in a log-log plot. A power function would be linear in 
such a plot; Right = SD by number, for all experiments. 
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of trial-type, F(1, 27) = 33.24, p < .001, but, perhaps surprisingly, no in-

teraction of Trial Type and either Feedback factor (Trial Type × Verbal 

Feedback: F[2, 27] = 1.35, p = .275; Trial Type × Nonverbal Feedback: 

F[2, 27] = 0.30, p = .746), which would have indicated a general impact 

of feedback on the response. Post-hoc two-sample t tests revealed that 

no response was influenced by feedback in the other task (p > .24 in 

each instance), but also that there was only very weak evidence, if any, 

for an effect of same-task feedback (ruler-based task, feedback +15 vs. 

0: t[20.20] = 0.92, p = .370; feedback −15 vs. 0: t[21.26] = −0.56, p = 

.580; typed response task, feedback +15 vs. 0: t[20.95] = 0.38, p = .706; 

feedback −15 vs. 0: t[15.94] = −2.57, p = .021). This is supported by 

visual inspection (see Figure 4).

Discussion
We conducted Experiment 5 for two main purposes: to be able to com-

pare responses obtained from different tasks with nonsymbolic stimuli 

and to investigate the effect of different types of feedback on the shape 

of the response functions. The shape we found for the typed response 

tasks was indeed different from what was found in previous experi-

ments—note that the overestimation for small numbers, found in all 

response functions to nonsymbolic stimuli, was not found here. The 

best fitting model was a power function (albeit not by much, see Table 

2), as has been proposed by several authors (Izard & Dehaene, 2008; 

Krueger, 1972; Nieder & Miller, 2003). We can also see (see Figure 3) 

that this was the only task where variability increased almost linearly 

with stimulus magnitude—a typical feature of magnitude estimation. 

In the ruler-based task, we found a similar, albeit somewhat steeper 

and more linear response function than in previous experiments, even 

before any feedback had been given. It is possible that the added prac-

tice trials had an effect here. 

With regards to the feedback we introduced to help participants 

calibrate their responses, we can see that response functions were 

markedly steeper after feedback was given. Feedback linearized the 

responses somewhat, although the response function was still quite far 

from a veridical function, and it was not clear whether this was still the 

case once feedback was removed. Still, ruler-based responses were also 

fit better in blocks after feedback had been given (but was not given any 

longer). This was not true of typed responses. Importantly, feedback 

effects did not transfer between tasks, indicating that any calibration 

was task-specific.

GENERAL DISCUSSION

Two classic findings were reproduced in our experiments: ruler-based 

responses to symbolic magnitude stimuli exhibited a linear shape in 

adult participants (Anobile, Cicchini, & Burr, 2012; Siegler & Opfer, 

2003), and typed responses to nonsymbolic magnitudes were fit best 

by a power function (Izard & Dehaene, 2008; Krueger, 1972; Nieder 

& Miller, 2003). Still, it should be noted that the predictions of these 

models were remarkably similar, as exponents of the power functions 

tended to be close to 1 and intercepts of the linear functions close to 0. 

We also investigated the ruler-based responses to nonsymbolic mag-

how the feedback worked. In the −15 and +15 feedback blocks, stimuli 

were restricted so that feedback fell in the 15-85 and 115-185 ranges, 

such that feedback was never too close to the bounds of the response 

bar, or on the ”wrong” side of the mid-point, so as to not make the 

manipulation too obvious (see Barth & Paladino, 2011). No oddball 

blocks were included. Each block consisted of 120 trials, resulting in a 

total of 720 trials per participant.

Results
Overall, 860 trials had to be removed because no valid answer had been 

given (3.3%) or for being outside the allowed response times. A further 

330 trials (1.3%) were excluded as outliers. One participant had to be 

removed from analysis for not understanding the task. During debrief-

ing, all participants were asked if they had considered the feedback to 

be accurate. Six out of 36 participants said that they had not, which in-

cluded one participant who had received veridical feedback. Following 

this, participants received information about whether they had in fact 

received veridical or distorted feedback. Removing the six participants 

who had believed the feedback to be inaccurate during the experiment 

and prior to debriefing from analysis did not substantially change the 

results (the following analyses include those participants).

Similar to the analysis of the other experiments, we first investigat-

ed how to best model the data from each task. We fit separate models 

for responses given in blocks prior to feedback, during feedback, and 

after feedback had been presented. In the ruler-based task, prefeedback 

data were fitted best by a power model, y = 4.69 × x^0.66; R² = .85, 

which fit marginally better than a linear model, R² = .85 to .84, with 

postfeedback data being better fit linearly, y = 0.79x + 24.86; R² = .93. 

As was the case in most previous tasks, the data were fit better when 

including previous trial magnitude as predictor, both before (ΔAIC = 

−11.43; b = 0.0424) and after feedback (ΔAIC = −26.9; b = 0.0440). 

During feedback, a power function gave the best fit, y = 2.97 × x^0.77; 

R² = .94, and, unsurprisingly, there was a very strong previous-trial ef-

fect, ΔAIC = −314.70; b = 0.2399. In all three phases, the differences in 

goodness of fit between the power model and the linear model were 

marginal, with the logarithmic function doing substantially worse (see 

Table 2). For the typed-response task, the data were fit best by a power 

function, in both the prefeedback, y = 1.91 × x^0.77; R² = .89, and post-

feedback blocks, y = 2.10 × x^0.81; R² = .90. Including the previous 

trial also improved the fit, ΔAIC = −35.32, b = 0.0579 for prefeedback 

and ΔAIC = −39.36, b = 0.0648 for postfeedback. With feedback, the 

linear model did best, y = 8.59 + 0.84x, R² = .94, but only marginally 

better than the power model (see Table 2), and showed a very strong 

effect of previous trials, ΔAIC = −463.97; b = 0.3258. Again, model fits 

were virtually equally good for linear and power functions, but worse 

for logarithmic fits.

To investigate further the effects of feedback on relative error, and 

to see if the feedback in the respective other task mattered at all, we fur-

ther conducted a mixed ANOVA with two between-subjects factors of 

symbolic feedback, as well as nonsymbolic feedback (3 levels each: +15, 

−15, 0), as well as the within-subject factor of trial type (ruler-based re-

sponse or typed response). Unsurprisingly, this revealed a main effect 
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on whether the stimulus type was the same or different in consecutive 

trials.

Regarding the second question of telling apart the different roles 

of input and output mapping in creating the typical shape of response 

functions: While a lot of research has focused on the different prop-

erties of symbolic and nonsymbolic magnitude processing, the con-

tribution of output format has not been investigated as much beyond 

the question of methodological confounds (Barth & Paladino, 2011; 

Cohen & Blanc-Goldhammer, 2011). Although using a ruler-based 

task may have some problems, it is also quite clear that it provides the 

possibility of a useful, very direct instrument of measuring responses 

to symbolic and nonsymbolic stimuli in a comparable way. In this 

study, we have laid out some key differences between ruler-based task 

and typed-response tasks, finding that both the mean responses (see 

Figure 2) and the measured variability (see Figure 3) differ between 

the two. However, we also found that effects of input type are much 

more pronounced than effects of the output measure (compare top and 

bottom rows of Figure 2).

We also used the two different tasks (a ruler-like response bar 

without a symbolic component and a typed response) to investigate 

whether giving feedback on one type of response would have any effect 

on responses in another type of response, which we did in Experiment 

5, thus trying to answer the third question: Can we linearize responses 

to nonsymbolic magnitudes through calibration, and if so, what do 

we calibrate? We found some, but not very strong linearization (see 

Figure 4), and no impact of feedback in one task on responses in the 

other task. Since both tasks used identical stimuli, we conclude that 

what is calibrated is not the input mapping from stimulus to internal 

nitudes, which were best fit by a power function in three out of four 

experiments.

What remains to be explained is the cause of the shape of these 

responses. Our experiments (see Table 1 and Figure 1) were designed 

to investigate three questions, namely, whether responses would de-

pend on previous trials and whether this could explain the response 

function shape, whether response functions for different input (in the 

same task) and output (with the same input type) would differ, and 

whether giving feedback to calibrate the response would linearize the 

response function.

With regard to the first question of whether these were dynamic 

effects brought about by the effects of previous trials, we found the 

strongest effects to be mostly static. There were previous-trial effects, 

but these were not strong enough to explain much of the variance—and, 

importantly, not robust to variations (such as flipping the response bar 

or randomising the starting position in Experiment 4) that the shape of 

the response function was robust to: The previous-trial effect we found 

virtually disappeared when different types of stimuli were presented on 

the current and previous trial, respectively, and disappeared entirely or 

was even reversed with a randomly flipped response bar in Experiment 

4. This touches on another debate, the question of whether a single 

semantic representation is underlying the processing of magnitudes 

of different notations (Dehaene, 1992; Walsh, 2003), or whether some 

magnitudes may be explained as sensory features (Arrighi, Togoli, & 

Burr, 2014). Our data do not speak strongly against either hypothesis, 

although a strong version of an underlying magnitude representation 

would probably predict less distinct interaction patterns depending 

FIGURE 4.

Responses in Experiment 5, by feedback. Prefeedback panels show data from all groups. Dashed lines depict veridical performance. 
Top row = ruler-based task. Bottom row = typed number response; Left column = before feedback was introduced; Middle column 
= feedback blocks; Right column = post-feedback blocks without feedback.
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representation, but the output mapping from internal representation 

to response. We also see that this is not sufficient to completely linear-

ize the response. Our data also allow the conclusion that the nonlin-

ear shape is arguably a function of input-to-representation mapping 

mechanisms, as it is seen in both tasks, and we have demonstrated 

that the ruler-based task in itself does not lead to a nonlinear response 

function.

We should also offer a word of caution on our stimuli. As men-

tioned in the Experiment 2 section, several sensory stimulus features 

were somewhat informative about the numerosities presented. Indeed, 

responses based solely on the circumference of the clouds would have 

allowed a participant to judge the magnitudes quite well (explain-

ing 59% of the variance, assuming perfect perception of this aspect). 

Participants scored substantially higher than this, however (see Table 

2), so that any reliance on purely sensory cues would have had to be a 

combination of several cues (see, e.g., Gebuis et al., 2014). However, the 

result of such a combination of cues would be a sort of nonsymbolic 

magnitude, and while the discussion about how to define nonsymbolic 

magnitude is an interesting one, it is beyond the scope of this paper. 

Another caveat is the fact that our stimuli were always displayed cen-

trally. This would have directed participants’ attention to the centre 

of the screen, as well as providing a potential point of reference, and 

thereby could have biased responses towards the middle of the response 

bar. We accounted for this by validating the method with Arabic digits 

(Experiment 1), but of course the visual processing of Arabic digits is 

much easier than that of clouds of dots—thus, it is possible for such a 

mechanism to affect nonsymbolic, but not symbolic trials. Of course, 

typed responses would not be affected by this mechanism and pro-

duced the same nonlinear response function (Experiment 5).

We conclude that the nonlinear shape of the number line is largely 

robust to calibration even through direct, veridical feedback, and that 

features of both stimuli and output measures contribute to it. Small 

effects of feedback do not transfer to different response types using 

the same stimuli, indicating that calibration affects the mapping from 

representation to output.  Serial dependencies exist between trials, but 

are too weak to explain the shape of the responses in such tasks.
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