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The extent to which the preparation of an eye movement and spatial attention both independently 
influence performance within the same task has long been debated. In a recent study that com-
bined computational modelling with a dual-task, both saccade preparation and spatial cueing were 
revealed to separately contribute to the discrimination of targets oriented along the cardinal axis 
(horizontal and vertical). However, it remains to be seen whether and to what degree the same 
holds true when different perceptual stimuli are used. In the present study, we combined evidence 
accumulation modelling with a dual-task paradigm to assess the extent to which both saccade 
preparation and spatial attention contribute to the discrimination of full contrast targets oriented 
along the oblique axis (diagonal). The results revealed a separate and quantifiable contribution of 
both types of orienting to discrimination performance. Comparison of the magnitude of these ef-
fects to those obtained for cardinal orientation discrimination revealed the influence of saccade 
preparation and spatial attention to be six times smaller for oblique orientations. Importantly, the 
results revealed a separate and quantifiable contribution of both saccade preparation and spatial 
attention regardless of perceptual stimuli or stimulus contrast. 
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INTRODUCTION

Vision researchers have been concerned with the extent to which spa-

tial attention and the preparation of an eye movement are linked or 

independent for over three decades (Hunt et al. 2019). One particular 

paradigm that has been used extensively to investigate this relation-

ship is the dual-task. Here, participants are asked to saccade to one 

element in a display whilst simultaneously detecting or discriminating 

a perceptual target at the same or a different location. Spatial attention 

is concurrently manipulated through the use of spatial cues or prob-

ability schedules. Studies that do not find any evidence that spatial at-

tention can influence performance at locations away from the saccade 

goal generally conclude that both forms of orienting are obligatorily 

linked (Deubel & Schneider, 1996; Deubel & Schneider, 2003; Hoffman 

& Subramaniam, 1995; Shepherd et al., 1986). Other researchers that 

report an influence of spatial attention away from the saccade goal 

typically interpret these results as evidence that each orienting mecha-

nism is independent (Born et al., 2013; Moehler & Fiehler, 2014, 2015; 

Montagnini & Castet, 2007). Only recently has it been possible to 

unambiguously quantify the relative contribution of these two forms 

of orienting to dual-task performance (Parker et al., 2020). This is 

because, to date, the most typical approach has been to use accuracy 

and response times (RTs) as measures by which to compare the con-

tributions of spatial attention and saccade preparation. However, in a 
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traditional analysis of manifest measures such as these, the influence 

of both spatial attention and saccadic orienting cannot be disentan-

gled from other aspects of dual-task performance. This is a particular 

problem for the dual-task paradigm, as difficulty complying with the 

task instructions to saccade to one direction and discriminate a target 

at the same or a different location requires conditions to be presented 

across separate blocks. Blocking experimental conditions introduces 

potential confounds that can limit the conclusions drawn about the 

operation of orienting specifically. In a previous study, we overcame 

this limitation by combining evidence accumulation modelling with 

a saccadic dual-task for the first time (Parker et al., 2020). The quality 

of evidence accumulation was used as a common currency by which 

to compare the influence of saccade preparation and spatial attention. 

The results revealed an independent and measurable influence of both 

saccade preparation and spatial attention during the discrimination of 

vertical and horizontal targets. While the size of the saccade congru-

ency effect remained relatively stable across two separate dual-task 

paradigms, the magnitude of the spatial cueing effect varied by cue 

type. The influence of spatial attention was greater when directed by a 

peripheral, rather than central, cue. 

One question that remains unanswered is the extent to which 

these orienting effects are specific to the perceptual stimuli and task 

employed. To date, the magnitudes of these effects have only been as-

sessed during the discrimination of stimuli oriented along the cardinal 

axes and where contrast has been individually adjusted. Therefore, the 

goal of the present study was to quantify the contribution of saccade 

preparation and spatial attention to the discrimination of obliquely 

oriented, full contrast stimuli. In doing so, our aims were twofold. 

First, we sought to use the computational method to compare the 

magnitude of the spatial attention and saccade preparation effects 

in a distinct perceptual task. Second, we sought to confirm that the 

influence of spatial attention and saccade preparation on perception 

was independent of target orientation and contrast (Castet et al., 2006; 

Montagnini & Castet, 2007). In doing so, our results shed new light 

on the circumstances and degree to which orienting contributes to 

perceptual performance.

Contribution of Orienting Across 
Perceptual Tasks
The findings from previous dual-task studies have, to date, been dif-

ficult to reconcile. While some authors reported an independent in-

fluence of spatial attention away from the saccade goal (Born et al., 

2013; Castet et al., 2006; Moehler & Fiehler, 2014, 2015; Montagnini 

& Castet, 2007), others found evidence to suggest the relationship 

is obligatory (Deubel & Schneider, 1996; Deubel & Schneider, 2003; 

Hoffman & Subramaniam, 1995; Shepherd et al., 1986). Part of the 

issue is that the experimental design of these studies varies greatly. 

One factor that often differs between studies is the perceptual task 

employed. Some authors, for example, require participants to detect a 

target letter or numeral amongst distractors (Deubel, 2008; Deubel & 

Schneider, 1996; Deubel & Schneider, 2003; Dore-Mazars et al., 2004; 

Hoffman & Subramaniam, 1995), whilst others require participants to 

discriminate the orientation (Castet et al., 2006; Moehler & Fiehler, 

2018; Montagnini & Castet, 2007) or the offset of a target (Born et al., 

2012; Born et al., 2013). These tasks differ in many ways. For example, 

letter discrimination requires high spatial acuity and is generally per-

formed better at fovea (Anstis, 1974). Orientation discrimination, on 

the other hand, requires less spatial resolution and can be performed 

well in peripheral vision (Pardiso & Carney, 1988). Given these dif-

ferences, it is reasonable to suspect that the relative effects of saccade 

preparation and spatial attention may also differ by task. 

Despite this, there has been no way to measure and compare the 

contribution of orienting across these distinct experimental designs. 

In a typical dual-task, accuracy and RTs are analysed separately. The 

limitation of analysing accuracy and RT separately is that it is not clear 

which is the best way to combine these measures into a single metric 

by which to compare task difficulty across conditions (Wagenmakers 

et al., 2007). For example, the speed-accuracy trade-off phenomenon 

(Fitts, 1966; Ratcliff & Rouder, 1998) refers to decision behaviour 

where cautious responding is associated with slower but more accurate 

choices, and less cautious responding is associated with faster but more 

error prone responding, even when task difficulty remains the same. 

This phenomenon makes it difficult to draw conclusions about perfor-

mance across experimental tasks from a separate analysis of accuracy 

and RT. For example, if, a participant exhibited the above pattern of 

responding across a letter and orientation discrimination task, respec-

tively, it would not be apparent from an analysis of accuracy and RT 

alone which task was more difficult or, indeed, if there was any differ-

ence in the difficulty of the tasks at all.

Evidence accumulation modelling, on the other hand, allows the 

contribution of each orienting mechanism to be quantified and com-

pared in a common currency. It does this by combining accuracy and 

the distribution of RTs for correct and error responses to estimate the 

parameters of a model that can separate the effects of response cau-

tion from task difficulty (Donkin et al., 2009, 2011). While accumula-

tion models differ with respect to their architecture, they all share the 

same three basic parameters; threshold, drift rate, and nondecision 

time. Thresholds measure the amount of evidence necessary to trig-

ger a response, and can therefore account for speed-accuracy trade-off 

behaviour. Drift rate is a measure of the deterministic component of 

a decision that captures both the quality and speed of information 

processing (Lewandowsky & Oberauer, 2018; Wagenmakers et al., 

2007). Nondecision time is the duration of all other non-decision 

activities, such as the time taken to encode the stimulus and make a 

motor response. By assessing how these parameters vary as a function 

of experimental manipulation, we can extract a direct, common, and 

theoretically interpretable measure of orienting and drift rate, that is 

separate from differences in response caution. It is these properties of 

parameter estimates that allow the influence of orienting to be com-

pared across blocked conditions and distinct tasks/stimuli.

Previously, we used this approach to measure the contribution 

of saccade preparation and spatial attention to the discrimination of 

cardinal orientations. In using an accumulation model, we were able 

to not only quantify the effect of both types of orienting across blocked 
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saccade conditions, but also to compare the relative influence of spatial 

attention when directed by a peripheral versus a central cue (Parker et 

al., 2020). Specifically, when a peripheral cue was employed, the mag-

nitude of the saccade preparation effect (1.16) was revealed to be simi-

lar in size to that of the peripheral cue (0.88). Here, we used the same 

method to measure the influence of orienting to oblique orientation 

discrimination, and for the first time, assessed whether, and to what 

extent, these effects vary by perceptual task. In doing so, we also sought 

to confirm that these influences were independent of target contrast 

and orientation. 

Contrast
It is well established that both spatial attention and saccade prepara-

tion alike modulate the detection and perception of contrast (Cameron 

et al., 2002; Carrasco et al., 2004; Ling & Carrasco, 2006; Lu & Dosher, 

2000; Pestilli & Carrasco, 2005; Rolfs & Carrasco, 2012). For example, 

one widely reported finding  is that spatial attention increases contrast 

sensitivity at attended locations and impairs it at unattended locations 

(Pestilli & Carrasco, 2005). Similar research has even suggested that spa-

tial attention modulates the subjective appearance of contrast, such that 

attention enhances the perceived contrast of a given stimulus (Carrasco 

et al., 2004). Complementary research into the perceptual consequences 

of preparing an eye movement has shown that the mere preparation of a 

saccade can also modulate the perceived contrast of a target at its upcom-

ing location. Specifically, saccade preparation has been shown to enhance 

a participant’s subjective perception of contrast at the upcoming saccade 

goal, with participants perceiving stimuli at this location to be of a higher 

contrast than stimuli at other locations (Rolfs & Carrasco, 2012). 

These findings suggest that spatial attention and saccade preparation 

alike can modulate both contrast sensitivity and the subjective percep-

tion of contrast. This is significant because a number of previous stud-

ies reporting an influence of spatial attention at locations independent 

of the saccade goal manipulated the contrast of discrimination stimuli 

(Castet et al., 2006; Montagnini & Castet, 2007). For example, Parker et 

al. (2020), in the computational study outlined above, individually ad-

justed the contrast of target and distractors for each participant. This was 

done to ensure that performance on an orientation discrimination task 

was not at ceiling. An unintended consequence, however, was that it is 

not clear to what extent these orienting effects depend upon manipula-

tions in contrast. That is, as both spatial attention and the preparation of 

an eye movement modulate contrast sensitivity, it is possible that these 

independent orienting effects do not generalize to stimuli presented at 

full contrast. In order to address this question, in the current study, we 

measured the magnitude of the saccade congruency and spatial cueing 

effect for full contrast stimuli. 

Oblique Versus Cardinal 
Orientations
T Discrimination performance is also known to vary by orientation. 

Stimuli along the cardinal axes are discriminated faster and more ac-

curately than stimuli along the oblique axes (Appelle, 1972; Furmanski 

& Engel, 2000; Heeley et al., 1997). This anisotropy has also been found 

to interact with attentional load (Bloem & Ling, 2017) and the prepara-

tion of an eye movement (Lee & Lee, 2008). Greater attentional load is 

found to impair the detection of oblique orientations to a greater extent 

than cardinal (Bloem & Ling, 2017), while saccade preparation has been 

reported to have the opposite effect on discrimination performance. That 

is, there is a decreased sensitivity to cardinal orientations at the goal of 

an upcoming eye movement about 100 ms before saccade onset (Lee & 

Lee, 2008). Again, these findings are important because the magnitude of 

each type of orienting has, to date, only been measured across one spe-

cific perceptual task, namely, cardinal orientation discrimination (Parker 

et al., 2020). Given that research suggests not only that the discrimination 

of oblique orientations is more difficult, but that each orientation may be 

uniquely influenced by attention and saccade preparation, it is possible 

that the contributions of spatial attention and saccade preparation may 

vary by orientation task. Therefore ,we sought to assess to what extent 

both spatial attention and saccade preparation contributed to oblique 

orientation discrimination, and whether the magnitude of these effects 

differed when compared to cardinal orientation discrimination.

The Current Study
The aim of the current paper was to measure the relative influence of sac-

cade preparation and spatial attention to an oblique orientation discrimi-

nation task. With this in mind, we used a similar experimental design 

and computational modelling approach to that employed previously (see 

Parker et al., 2020, Experiment 2). Saccade preparation was manipulated 

by having participants prepare and execute eye movements towards one 

of three different placeholders (left, right, or above fixation), separated 

across blocks. An auditory tone signalled the onset of an eye movement. 

The discrimination target, an obliquely angled Gabor patch surrounded 

by a vertical Gabor patch of the same spatial frequency, could then appear 

in any of the three locations. Spatial attention was directed through the 

use of a peripheral cue which could appear at any of the three placeholder 

positions. The inclusion of three placeholder positions meant that we 

could vary the angle at which the target appeared from both the saccade 

goal and spatial cue. Some studies have found the benefit of preparing an 

eye movement to be spatially distributed around the saccade goal (Castet 

et al., 2006), while more recent research suggests that these effects are 

largely confined to the saccade goal (Szinte et al., 2019; Wollenberg et al., 

2018). Consistent with this latter approach, Parker et al. (2020) found no 

evidence to suggest that spatial attention or saccade preparation effects 

were spatially distributed. In the current study, we examined whether this 

is true for obliquely oriented stimuli. If the saccade preparation effect is 

spatially distributed, then performance should be better when the target 

appears 90 º from the saccade goal, relative to 180 º. Similar predictions 

follow for spatial attention if these effects are spatially distributed.

Importantly, the participant’s task was to report the angle of tilt (left 

or right) of the target, compared to the upper half of the surrounding 

vertical Gabor. To ensure performance was off ceiling rather than ma-

nipulate contrast, the angle of tilt was adjusted to an 82% threshold in a 

separate staircase procedure that set the angle of the target throughout 

the main task.
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The relative contribution of each orienting mechanism was as-

sessed by fitting the linear ballistic accumulator (LBA; Brown & 

Heathcote, 2008) to data from the dual-task. In order to account 

for any differences in response caution that can exist across blocked 

conditions, we allowed the threshold parameter of the LBA model, 

the criterion level of information that must be accumulated from the 

environment in order to trigger a choice or response, to vary by sac-

cade direction (left, right, or up). Our primary dependent measure 

was drift rate, the rate at which evidence accumulates towards the 

threshold. Estimates of this parameter are able to capture both the 

quality and quantity of information accumulation. Specifically, by 

taking the difference in drift rate between an accumulator for the 

correct response (i.e., the rate at which evidence accumulates for the 

response that matches the stimulus or the “true” accumulator) and 

the incorrect response (i.e., the rate at which evidence accumulates 

for the response that mismatches the stimulus or the “false” accumu-

lator), we can quantify the quality of information in the system. That 

is, larger differences in drift rate between the true and false accumu-

lator represent a higher quality of information accumulating from 

the stimulus (Boag et al., 2019). The drift rate parameter allowed 

us to quantify the relative contributions of saccade preparation and 

covert spatial attention to performance and separate this influence 

from other factors in the dual-task design that may influence perfor-

mance (Lewandowsky & Oberauer, 2018). Therefore, drift rate can 

be used as a measure by which to compar e the quantitative effects of 

orienting across distinct studies. In quantifying and comparing these 

effects across tasks, we expected that, consistent with our previous 

study (Parker et al., 2020), there would be a separable and measur-

able influence of both saccade preparation and s patial cueing to 

oblique orientation discrimination.

METHOD

Participants
Twenty-four participants (6 males) from Macquarie University took 

part in the experiment in return for course credit. All experimental 

procedures were approved by the local ethics committee and all par-

ticipants gave informed consent before participation. Participant age 

ranged from 19 to 29 years (M = 20.13, SD = 2.06). All participants 

had normal or corrected to normal vision. Eight participants were 

replaced either because they did not perform reliably better than 

chance (N = 6) or they did not make the correct eye movement on a 

sufficient number of trials (N = 2). Power simulations (Brysbaert & 

Stevens, 2018) using standard estimates taken from a previous study 

(saccade congruency b = 1.01, cue validity b = 0.81, Parker et al., 

2020) confirmed that there was sufficient power (80%) for an α level 

of .05 with a sample size of 24..

Stimuli
The experiment was run and all stimuli were generated using 

PsychoPy (Peirce et al., 2019). All stimuli were presented white 

against a grey background. Discrimination targets were diagonally 

oriented Gabor patches (1.23 ° in diameter) generated by modulating 

a sine wave (1.6 cycles per degree) with a Gaussian envelope (SD = 

0.35 °). All targets were surrounded by a vertically oriented Gabor 

patch (2.06 ° diameter) with the same spatial frequency as the target. 

Distractors were vertically oriented Gabor patches (2.06 ° diameter). 

Possible target location was indicated by three placeholder squares 

(3.04 ° × 3.04 °) positioned 2.73 ° to the left, right, and above the 

fixation (see Figure 1). Target location was cued by one of the place-

holders turning pink.

FIGURE 1.

Trial schematic of a valid trial. Inset is example of target and distractor stimulus, respectively. Note that stimuli 
were presented as white against a grey background.
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Design
The experiment followed a 3 × 3 factorial design where saccade con-

gruency had three levels (congruent, incongruent-180 °, and incon-

gruent-90 °) and cue validity had three levels (valid, invalid-180 °, and 

invalid-90 °). Trials in which the target appeared at the placeholder 

above fixation could not occur in the incongruent-180 ° or invalid-180 

° condition. Therefore, in order to maintain an equal number of tri-

als in each condition, we excluded these trials from our analysis. In a 

separate analysis, we confirmed that this decision did not significantly 

alter the pattern of results1. Incongruent-180 ° trials were trials where 

the saccade goal was directly opposite the target (180 °) and incongru-

ent-90 ° trials were where the saccade goal appeared at an angle of 90 

° from the target. The spatial cue appeared at the same locations with 

respect to the target in the invalid-180 ° and invalid-90 ° conditions. 

Participants completed 108 practice trials, followed by 144 trials of a 

QUEST staircase procedure (Watson & Pelli, 1983), where two inter-

leaved staircases adjusted the angle of the target relative to its vertical 

background to an 82% accurate threshold. The angle ranged from 

±10-45 ° from vertical, adjusted for each individual participant (M = 

33 °, SD = 12 °). The outcome of this staircase procedure set the angle 

that was maintained throughout the main task. The main experiment 

consisted of 252 trials per saccade direction for a total of 756 trials. 

Participants received a break screen after every 80 trials and at the 

start of a new eye movement direction, with the experiment taking 

approximately two hours to complete. The eye tracker was calibrated 

using a 9-point calibration procedure at the start of every block and as 

necessary throughout the task.

Procedure
Participants were informed at the outset of each block that they must 

simultaneously complete both the saccade and orientation discrimi-

nation task. For the saccade task, participants were told that upon 

the onset of an auditory tone, they must saccade to the left, right, or 

upward of the placeholder box. Saccade direction (left, right, or up) 

was separated into three blocks and the order of the blocks was coun-

terbalanced across every 6th participant. The participants’ task was an 

oblique orientation decision in which they were required to indicate on 

a keyboard whether a target was tilted to the right or left. Participants 

were told to make their tilt judgement with reference to the top half of 

the stimulus. 

Participants sat in a darkened room before an LED monitor (1920 

× 1080 p, 120 Hz). A chin and forehead rest positioned on the edge of 

the desk, at a distance of 85 cm from the monitor, stabilized the par-

ticipants’ head throughout the experiment. An Eyelink 1000 Desktop 

Mount eye tracker (SR Research) monitored the position of the partici-

pants’ right eye throughout the experiment (500 Hz). The trial com-

menced when participants pressed the space bar while fixating on the 

small red circle in the centre of the screen. The first frame displayed the 

three white placeholder squares. The duration of this frame was drawn 

from an exponential function (minimum of 350 ms). If the duration 

exceeded the maximum of 1120 ms, the trial was terminated (~10% 

of all trials). This was done to ensure the participants had a flat hazard 

rate with respect to the beginning of the trial and the onset of the eye 

movement signal (Ghose & Maunsell, 2002). On the remaining trials, 

an auditory tone played for 50 ms. The tone signalled to participants 

to make an eye movement. After a further 50 ms, one of three white 

placeholders was cued by drawing the outline in pink for 50 ms. Each 

placeholder location was equally likely to be cued and the cue was non-

predictive about the location of the target. After 50 ms, the target was 

displayed for 100 ms. The target could appear in any of the placeholder 

positions and was, therefore, validly cued on one third of all trials. 

Distractors accompanied the onset of the target in the two remaining 

placeholder squares. The participants had 3 s to respond by pressing 

the left or right arrow key to indicate whether the target was leaning 

to the left or right or the trial timed out. The participants received two 

types of visual feedback. “Correct” or “Incorrect” indicated whether 

the correct orientation discrimination decision had been made, while 

the colour of the feedback (green or red) indicated whether the correct 

eye movement has been made. If no saccade was detected within 750 

ms of tone onset, the participants received the feedback “too slow.” 

Gaze Data Analysis
Eye movements were monitored both online and offline. Online 

monitoring of eye movements ensured that participants maintained 

central fixation until the onset of the auditory go-signal. If a saccade 

was detected in any direction more than 1.45 ° from fixation before 

the tone, the trial was immediately terminated and recycled. A correct 

saccade was defined as one that landed within the instructed place-

holder square. An offline algorithm was used to determine the onset of 

the saccades. At each time point, raw eye position data was smoothed 

with a Gaussian function. The average velocity of five neighbouring 

time points was then used to compute a smoothed average eye velocity. 

Saccades were detected when eye velocity exceeded the median veloc-

ity by more than 5 SDs for at least 8 ms (Engbert & Kliegl, 2003). Trials 

containing blinks, incorrect saccades (9% of all trials), or eye move-

ments initiated before the offset of the target were eliminated (9.4 % of 

all trials). Only trials in which the eyes were at fixation while the target 

was onscreen were compared. As is typical in the dual-task literature, 

any trial where saccades were initiated more than 450 ms after target 

offset were eliminated (0.4% of all trials, Born et al., 2013; Castet et al., 

2006; Moehler & Fiehler, 2014, 2015, 2018). This meant that a total of 

18.8% of all trials were excluded from subsequent analysis.

RESULTS

As a first step, we conducted an analysis of accuracy, correct RT, and 

saccade latency as a function of saccade congruency and cue validity. 

Generalised linear mixed modelling for accuracy data (GLMM) and 

linear mixed effects modelling (LMM) for correct RT and saccade 

latency data was implemented in R using the lme4 software package 

(Bates et al., 2015). The reliability of each effect of interest was evaluat-

ed using the incremental modelling approach in which goodness of fit 

statistics (AIC, BIC, and Log likelihood values; Akaike, 1974; Schwarz, 

1978) were used to determine which of our models provided the best fit 
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for our data. This procedure involved comparing a model that included 

the effect of interest with one that excluded the effect of interest. Only 

effects that significantly improved the fit of the model were included 

in the analysis. Trials in which RT exceeded 3 SDs of the participants 

mean were excluded from the analysis (2.1% of trials). As it is typical in 

dual-task studies, to analyse data as a function of time between target 

offset and saccade onset, but not central to the aim of our study, we 

included an analysis by absolute time in the Supplementary Materials 

(Born et al., 2013; Deubel, 2008).

Manifest Analysis

ACCURACY
The incremental modelling procedure revealed the model of best fit 

to include a main effect of saccade congruency, χ2(2) = 28.20, p < .001, 

and cue validity, χ2(2) = 28.73, p < .001. Accuracy was better when the 

discrimination target and saccade goal were congruent (M = 0.80, SD = 

0.13) relative to when they were at a 90 °, (M = 0.76, SD = 0.14; b = −0.29, 

SE = 0.07, z = −4.26, p < .001,) or a 180 ° angle, (M = 0.75, SD = 0.13; b = 

−0.34, SE = 0.07, z = −5.06, p < .001) from each other. A follow-up t-test 

confirmed there was no significant difference between incongruent-90 ° 

or 180 ° trials, t(23) = 0.38, p = .71. Similarly, accuracy was higher when 

the target was preceded by a valid cue (M = 0.80, SD = 0.13) relative to a 

cue located 90 ° (M = 0.76, SD = 0.13; b = −0.30, SE = 0.07, z = −4.29, p < 

.001) or 180 ° from the target (M = 0.75, SD = 0.14; b = −0.34, SE = 0.07, 

z = −4.95, p < .001, see Figure 2, Panel A). Again, there was no evidence 

to suggest that accuracy differed for invalid-90 ° or 180 ° trials, t(23) = 

0.81, p = 0.71.

REACTION TIME
An LMM with correct RT as the dependent measure revealed the 

model of best fit to include a main effect of saccade congruency, χ2(2) = 

66.63, p < .001, and cue validity χ2(1) = 38.18, p < .001. Button press RTs 

were faster when the discrimination target appeared at the goal of an 

upcoming eye movement (M = 722 ms, SD = 111) relative to appearing 

at a location at 90 ° (M = 742, SD = 110; b = 28.62, SE = 5.03, t = 5.70) or 

180 ° from the saccade goal (M = 764, SD = 128; b = 41.35, SE = 5.06, t 

= 8.17). There was no evidence to suggest that RT differed whether the 

incongruent location was 90 ° or 180 ° from the target, t(23) = −1.54, p 

= 0.27. Reaction times were also faster when the discrimination target 

was preceded by a valid (M = 724 ms, SD = 109) relative to an invalid 

cue at an angle of 90 ° (M = 751, SD = 122; b = 25.07, SE = 5.05, t = 4.96) 

and 180 ° (M = 754, SD = 120; b = 28.58, SE = 5.06, t = 5.65). Again, 

a t-test did not reveal any evidence to suggest that RTs significantly 

differed whether the placeholder 90 ° or 180 ° from the target was cued, 

t(23) = −0.82, p = 421.

SACCADE LATENCY
The incremental modelling procedure revealed the model of best fit 

to include a main effect of saccade congruency, χ2(2) = 113.00, p < .001, 

and an interaction between saccade congruency and cue validity, χ2 

(4) = 213.94, p < .001. This interaction is best understood as a conflict 

effect between saccade goal and cue location. That is, eye movements 

were slower when the spatial cue appeared at a location incongruent to 

the saccade goal, relative to when it appeared at a congruent location. 

We therefore recoded trials as a function of this spatial cue-saccade 

goal congruency. Three FDR adjusted pairwise t-tests revealed laten-

cies to be significantly faster towards the spatial cue (M = 367, SD = 

38) compared to opposite it (M = 393, SD = 40; t(23) = −8.43, p < .001) 

or at a 90 ° angle from it (M = 386, SD = 41), t(23) = −5.86, p < .001. 

A t-test confirmed that latencies were also slower when a saccade was 

required to the placeholder opposite the cue relative to at a 90 ° angle, 

t(23) = 2.27, p = .03

Linear Ballistic Accumulator Analysis

MODEL SPECIFICATION
We fit the linear ballistic accumulator (LBA) to each participant’s 

data. The LBA models have one accumulator for each response, each 

with potentially different parameter values. Therefore, there was one 

accumulator for left leaning targets, and one for right leaning targets. 

Each accumulator had the following parameters: start point noise, 

representing the range of evidence values in each accumulator at the 

beginning of the decision, which was assumed to follow a uniform 

distribution with a range of 0 to A ≥ 0; drift rate, the rate at which 

evidence towards a decision is accumulated, which was assumed to fol-

low a normal distribution with a mean of v and a SD of sv ≥ 0; response 

threshold, the amount of evidence necessary to trigger a decision, 

FIGURE 2.

Saccade congruency and cue validity effect in accuracy (Panel 
A), reaction time (in milliseconds, Panel B), and saccade latency 
(in milliseconds, Panel C). Error bars represent within subject 
SEMs.
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denoted by b (note that the results here are reported in terms of the dif-

ference between the top of the start point distribution and the response 

threshold, B = b – A ≥ 0); and non-decision time, Ter ≥ 0, which we 

assumed to be the same for both accumulators (Donkin et al., 2011; 

Heathcote et al., 2002)

In order to describe the LBA parameterisation, we defined a re-

sponse accumulator factor “R”, with levels that corresponded to the left 

and right accumulators, and an accumulator correspondence factor, 

“C”, which denoted the “true” (matching) and “false” (mismatching) 

accumulator for each stimulus. For example, if the target was offset to-

wards the left, then the left accumulator is the “true” accumulator and 

the right is the “false” accumulator. The difference between the drift 

rates for the true and false accumulators is a measure of the quality of 

information accumulation, with larger differences indicative of a great-

er quality of information in the system (Boag et al., 2019). Therefore, 

difference between the true and false accumulators was the primary 

dependent measure by which to compare the relative contributions of 

orienting. Response bias was modelled by allowing B to vary with the 

response factor. Above-chance performance requires a higher evidence 

accumulation rate for the true than false accumulator, and this was 

modelled by allowing v to vary with the correspondence factor.

We allowed threshold to vary as a function of saccade instruction 

(up, left, or right), as these conditions were blocked. Drift rate was al-

lowed to vary by saccade congruency and cue validity. The sv param-

eter was allowed to vary with the correspondence factor (Heathcote et 

al., 2002; Heathcote & Love, 2012), and sv for the mismatching param-

eter was fixed at 1 to make the model identifiable (Donkin et al., 2009). 

A single value for all conditions of A and Ter were estimated.

MODEL FIT
Separate model fits to each participant’s data were obtained using 

maximum likelihood estimation. We used the optimization (param-

eter search) method to obtain fits, fitting models with fewer param-

eters, and then used the best fitting parameters for the simple models 

as starting points for the best fitting parameters of more complicated 

models (Donkin et al., 2011). Graphical summaries, included in the 

Supplementary Materials, confirmed that our selected models were 

able to capture the major trends in the data (Heathcote et al., 2002).

PARAMETER ESTIMATES
Thresholds. First, threshold estimates (B) were assessed using a 

LMM, which included an effect of blocked saccade instruction (left, 

right, and up) and response (right or left tilt). The LMM of best fit was 

revealed to include a main effect of saccade instruction, χ2(2) = 11.91, 

p = .002. Thresholds were higher for trials that required a saccade to 

the placeholder above fixation (2.16) relative to trials that required an 

eye movement towards the left (1.96; b = −0.20, SE = 0.07, t = −3.10) or 

right placeholders (1.97; b = −0.19, SE = 0.07, t = −2.93).

Drift rate. Our main dependent measure of interest was the quality 

of information accumulation, quantified as the difference between the 

true and false drift rate. A difference score was computed between each 

accumulator (true minus false) for every subject and every condition. 

This difference score was then submitted to a LMM to determine if sac-

cade congruency and cue validity modulated the quality of informa-

tion accumulation. The LMM revealed the model of best fit to include 

a main effect of saccade congruency, χ2(2) = 16.82, p <.001, and cue 

validity, χ2(2) = 18.05, p <.001. 

We followed this analysis by quantifying the magnitude of these 

effects. As the manifest analysis revealed no evidence to suggest that 

performance differed whether the saccade goal or spatial cue appeared 

at an angle of 90 º or 180 º from the target, we collapsed “incongruent” 

and “invalid” trials to create a single condition. To quantify the size 

of the saccade congruency effect, we took the difference between the 

true and false drift rate on trials where the saccade goal was congruent 

with the target vs. trials in which the saccade goal was incongruent. 

The same comparison was made for valid relative to invalid trials. The 

results revealed the effect of saccade congruency (0.20) to be of a simi-

lar magnitude to the spatial cueing effect (0.14, see Figure 3). There was 

no evidence to suggest that the magnitude of these effects significantly 

differed, t(23) = 1.45, p = .16. 

Saccade Latency Modeling
There was a significant conflict effect in saccade latencies such that eye 

movements were initiated fastest when the spatial cue and saccade goal 

coincided, slower when they were at an angle of 90 °, and slowest when 

they were directly opposite each other. As an analysis of latencies alone 

does not allow us to characterise the nature of this effect, we followed 

up our manifest analysis by fitting an LBA model to each participant’s 

saccade latency data. In particular, we examined whether this conflict 

effect was best explained by modulations in the drift rate parameter, 

which measures the speed with which a response is made and quanti-

fies task performance, or the nondecision time parameter, a measure of 

all nondecision processes involved in the task. If the conflict effect was 

best explained by the drift rate component of the model, this would 

suggest that saccade preparation and spatial attention are yoked, and 

that this yoking influences the perception of the target. If, instead, 

FIGURE 3.

Difference between true and false drift rate for saccade con-
gruency and cue validity. Main graph shows the saccade con-
gruency and cue validity effects in the quality of information 
accumulation. Inset shows the magnitude of these effects. Er-
ror bars are within-subject SEMs.
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the conflict was best explained by the nondecision component of the 

model, this would be good evidence that this conflict occurs outside 

the decision stage of the dual-task, perhaps during the motor execution 

of an eye movement.

Model Specifications
The model only had a single accumulator corresponding to correct 

eye movements, as these were the only trials included in the analysis. 

Nondecision time (T0) and drift rate (v) were allowed to vary by wheth-

er the saccade goal and spatial cue coincided (congruent), were at an 

angle of 90 ° (incongruent-90 °), or were directly opposite each other 

(incongruent-180 °). A single value was estimated for all conditions of 

A and B, and we fixed sv = 1 to make the model identifiable.

Model Fit
The maximum likelihood model estimation software used above does 

not allow for fitting a single accumulator, so we used the more flexible 

DMC Software (Heathcote et al., 2018), which carries out estimation 

in a Bayesian manner. We outline the priors and sampling procedure 

in the Supplementary Materials. Sampling occurred in two steps. 

First, sampling was carried out separately for individual participants. 

The results of this procedure were then used as starting points for the 

full hierarchical model, whose results are reported below. Model fit 

was good and cumulative distribution functions are presented in the 

Supplementary Materials.

Parameter Estimates
Parameter estimates are reported as posterior medians with 95% cred-

ible intervals given in square brackets. The effects of cue-congruency 

are tested using Bayesian p-values to test the difference in parameters 

between conditions (Klauer, 2010) by tabulating differences between 

pairs of parameters. The p values correspond to the proportion of 

differences where congruent was greater than incongruent-90 ° or in-

congruent-180 °. Hence, small p-values support better performance in 

the congruent condition. Nondecision time was revealed to be 0.017 s 

faster when the cue and saccade goal were congruent relative to incon-

gruent-180 ° (0.193 s [0.190, 0.196] vs. 0.210 s [0.207, 0.213], p < .001). 

Nondecision time was also 0.017 s faster when the cue and saccade goal 

was congruent compared to incongruent-90 ° (0.193 s [0.190, 0.196] vs. 

0.210 s [0.207, 0.213], p < .001). There was no evidence to suggest non-

decision time differed whether the spatial cue and saccade goal were at 

an angle of 180 ° or 90 ° from each other. Nor was there any evidence to 

suggest that the drift rate parameter varied by cue congruency.

DISCUSSION

The aim of the current study was to quantify the relative contributions 

of saccade preparation and spatial attention to the discrimination of 

oblique orientations. Specifically, we sought to measure the magnitude 

of the saccade congruency and spatial cueing effect to an oblique orien-

tation discrimination task that employed full contrast stimuli. In using 

an evidence accumulation model, we were able to establish that there is 

a unique and quantifiable influence of saccade preparation and spatial 

attention to oblique orientation discrimination for full contrast stimuli.

Independent and Measurable 
Influence of Saccade Preparation 
and Spatial Attention
Consistent with our previous study (Parker et al., 2020), there was 

an influence of both saccade congruency and spatial cueing on per-

formance. The saccade congruency effect was apparent in manifest 

measures, where accuracy was higher and response times faster when 

the saccade goal and discrimination target coincided relative to when 

they did not (Deubel, 2008; Hoffman & Subramaniam, 1995; Kowler 

et al., 1995; Shepherd et al., 1986). There was no apparent difference 

in performance when a saccade was directed away from the target 

and towards a placeholder positioned 90 ° or 180 ° from the target. 

Accumulator modelling confirmed that saccade congruency modulat-

ed the quality of information accumulation. There was a higher quality 

of signal accruing from the discrimination target when it appeared at 

the same location as an upcoming eye movement, relative to an incon-

gruent location. Critically, there was also an effect of spatial cueing. 

Regardless of the direction an eye movement was prepared, accuracy 

was better and RTs were faster when the target was preceded by a valid 

compared to an invalid cue (Born et al., 2013; Deubel, 2008; Moehler 

& Fiehler, 2014, 2015; Montagnini & Castet, 2007). We found no evi-

dence to suggest that performance differed when the cue appeared 90 

° or 180 ° from the target. Spatial cueing was similarly confirmed to 

modulate the quality of information accumulation, with higher quality 

signal accumulating from the target when it was preceded by a valid 

rather than invalid spatial cue (Carrasco & McElree, 2001; Smith & 

Ratcliff, 2009; Smith et al., 2004).

We then quantified the magnitude of these effects in the thresh-

old and drift rate parameters of the LBA model. The results revealed 

the threshold parameter to vary by saccade instruction (left, right, or 

up). Thresholds were significantly higher for the block in which par-

ticipants were required to saccade towards the placeholder positioned 

directly above fixation compared to blocks which required rightward 

or leftward saccades. While unexpected, the effect of saccade instruc-

tion on thresholds may reflect biological and perceptual differences 

between vertical and horizontal saccades. While originally assumed to 

be similar (Smit et al., 1987), research has now established not only that 

there are anatomical differences between the generation and execution 

of vertical and horizontal saccades (Bonnet et al., 2013; Leigh & Zee, 

2015), but that vertical saccades are subject to more interference from 

distractors than horizontal eye movements (Laidlaw & Kingstone, 

2010). It is possible that participants require a greater amount of infor-

mation to trigger responses on upward saccade trials because there is a 

larger amount of interference when the cue and target appear along the 

horizontal axis. Importantly, unlike an analysis of accuracy and RT, the 

computational modelling approach allowed us to account for these dif-

ferences in threshold. By allowing the threshold parameter to vary by 

saccade direction, these differences can be isolated and we can extract 

an unambiguous measure of orienting.
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In quantifying the influence of saccade congruency and cue valid-

ity in drift rate our results revealed an independent and measurable 

influence of both saccade preparation and spatial attention to the 

discrimination of oblique orientations. The magnitude of the saccade 

congruency (0.20) and spatial cueing (0.14) effects were revealed to be 

similar. Indeed, consistent with our previous study, follow-up analysis 

revealed no evidence to suggest that they differed significantly in mag-

nitude from each other. Critically however the results of the present 

study did replicate our previous findings. This was true even though 

the perceptual task was more difficult and the stimuli were presented 

at full-contrast. 

There was however a conflict effect between cue location and sac-

cade goal evident in the saccade latencies. That is, participants were 

slower to move their eyes in a direction away from the spatial cue 

relative to towards the cue. At first glance, this finding may be inter-

preted as evidence that spatial attention and saccade programming are 

obligatorily linked. Slower latencies on cue-incongruent trials may be 

because participants first plan an eye movement in the direction of 

the cue, then must reprogram and execute an eye movement towards 

the final saccade goal. However, an alternative explanation is that this 

conflict effect, rather than reflecting a perceptual coupling between 

orienting mechanisms, is best explained as a type of saccadic bottle-

neck. That is, when the spatial cue and saccade goal are in conflict, 

there is a conflict in the saccade execution stage that must be resolved 

before an eye movement can be programmed. Therefore, this conflict 

influences the motor components of the response rather than the 

perceptual aspects of the decision. The LBA modelling of saccade la-

tency data confirmed that the conflict effect was best explained by the 

nondecision time parameter of the model. A finding that suggests this 

latency effect is best explained by a bottleneck in the saccade execution 

stage. This result further suggests that spatial attention is not always 

obligatorily tied to the goal of an upcoming eye movement. 

Comparison of Magnitudes Across 
Oblique and Cardinal Orientation 
Discrimination
A significant advantage of computational modelling is that it allows 

the influence of each type of orienting to be measured in a common 

currency that can be used to make meaningful comparisons across 

different dual-task designs. This is possible because in fitting an evi-

dence accumulation model, factors that may influence performance 

on a dual-task can be isolated and accounted for. In doing so, a quality 

measure of how orienting contributes to the deterministic component 

of a decision can be extracted. Using this approach, we have previously 

shown that the contribution of spatial attention to task performance 

varies by cue type. That is, when spatial attention is directed with a 

peripheral cue, there is a much larger influence of spatial attention 

on perception than when it is directed by a centrally presented arrow. 

In the current study, we extended this approach to examine how the 

contributions of spatial attention and saccade preparation vary across 

distinct perceptual tasks and stimuli for the first time. Specifically, we 

were able to compare the effects obtained in the current study with 

obliquely oriented stimuli to those previously reported with cardinally 

oriented targets (Parker et al., 2020).

Importantly, despite finding an independent and quantifiable in-

fluence of both spatial attention and saccade preparation, the relative 

sizes of these effects were approximately six times (84%) smaller than 

those previously reported (Parker et al., 2020). This was true despite 

the manipulation of saccade congruency and spatial cueing being 

identical to the current paradigm. Therefore, we attribute this mag-

nitude effect to the use of different perceptual stimuli, and specifically 

to the difficulty of discriminating oblique orientations in the current 

study relative to cardinal orientations in the previous study. However, 

difficulty does not refer to overall accuracy performance, but rather 

the computational differences between discriminating oblique and 

cardinal orientations. Individual performance on the oblique task 

was more variable than that reported for vertical and horizontal 

stimuli. This trial-to-trial variability may have contributed to smaller 

overall effects of saccade congruency and spatial cueing. Some of this 

variability likely stems from the modification of the target stimulus. In 

contrast to previous studies, the target stimulus in the present study 

was composed of a vertical Gabor (2.06 ° in diameter) superimposed 

by a smaller oblique Gabor (1.23 °). This target stimulus may have in-

fluenced variability in two ways. First, the superimposed Gabor, which 

contained the oblique information necessary for a decision, was small-

er than the targets in the previous study. Second, our discrimination 

target may have been difficult to detect due to orientation-surround 

suppression. Studies have shown that the discrimination of a stimulus 

can be affected by the orientation of the surrounding stimulus, par-

ticularly when the orientations are similar in angle (Petrov & McKee, 

2006; Polat & Sagi, 1993). It is possible that by superimposing our 

target stimulus on a reference vertical Gabor, there was an increased 

amount of suppression from the surrounding Gabor making oblique 

orientations even more difficult to judge. Other research has found 

exogenously oriented spatial attention and saccade preparation to 

modulate orientation information distinctly. Fernandez et al. (2019) 

reported that while exogenous spatial attention enhanced the gain 

of orientation information, the preparation of an eye movement also 

narrowed orientation tuning.

Regardless of the overall difference in magnitude between these 

two studies, the relative contribution of spatial attention and saccade 

preparation remained similar across both studies. Again, we found no 

evidence to suggest that the saccade congruency and spatial cueing ef-

fect differed significantly in magnitude when a peripheral cue was em-

ployed. However, modelling enabled us to detect a small but unique 

and measurable impact of spatial attention away from the saccade 

goal. Our results not only confirm that there are independent effects 

of spatial attention and saccade congruency to perception, but, for 

the first time, allow the extent of these effects to be compared across 

unique discrimination tasks. Results suggest that while the magnitude 

of each orienting mechanisms varies by perceptual task, there is still 

a measurable and unique influence of spatial attention independent 

from the saccade goal (for further discussion, see Parker et al., 2020).
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Conclusion
The current study establishes two important findings. First, it confirms 

that there is a unique influence of both saccade preparation and spatial 

attention to dual-task performance, replicating our original findings. 

Second, it establishes a method by which to compare the relative influ-

ence of orienting across distinct perceptual tasks. A central issue in 

the study of spatial attention and saccadic programming is the lack of 

consistency in paradigms used to investigate this relationship (Born et 

al., 2014). This has led to a large number of studies, with some suggest-

ing that spatial attention and saccade preparation are linked, and oth-

ers arguing to the contrary. Importantly, until now, there has been no 

way to reconcile these results. In the dual-task literature alone, which 

represents only one type of paradigm used to investigate this relation-

ship, the typical dual-task design varies along a number of different 

dimensions. For example, how saccades are directed and blocked, how 

spatial attention is manipulated and what type of perceptual task is 

employed can all differ between tasks. Our results are significant not 

only because they confirm that spatial attention is not always obligato-

rily tied to the goal of a saccade, but also because they establish a new 

way to measure the influence of orienting across different paradigms. 

Using this method, we established that when experimental design fac-

tors are accounted for, there is still a unique and measurable influence 

of both spatial attention and saccade preparation to the discrimination 

of oblique orientations at full contrast.

FOOTNOTES
1 The linear mixed effects modelling (LMM) and generalized linear 

mixed modelling (GLMM) procedure revealed the same pattern of 

results as that reported here, when “target up” trials were included.
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SUPPLEMENTARY MATERIALS

Manifest Analysis Including 
Absolute Time Bin

Trials were divided into four separate time bins. This led to dispropor-

tionate bin sizes. Trials where the saccade occurred within 100 ms of 

target offset comprised 62%, trials with saccade latencies between 101 

and 200 ms of target offset comprised 23%, trials with saccade latencies 

between 201 and 300 ms comprised 11%, while trials with saccade la-

tencies greater than 300 ms comprised 4%. We included absolute time 

bin as a factor in our analysis. 

ACCURACY
The incremental modelling procedure revealed that the inclusion 

of saccade congruency, χ2(2) = 28.20, p < .001, and cue validity, χ2(2) = 

28.73, p < .001, improved the fit of the model. Accuracy was best when 

the discrimination goal and saccade target were congruent (M = 0.80, 

SD = 0.13) relative to when they appeared at a 90 ° (M = 0.76, SD = 0.14; 

b = −0.29, SE = 0.07, z = −4.26, p < .001) and 180 ° angle (M = 0.75, 

SD = 0.13; b = −0.34, SE = 0.07, z = −5.06, p < .001) from each other. 

Similarly, accuracy was also best when the cue was valid (M = 0.80, SD 

= 0.13) compared to when it was invalid at an angle of both 90 ° (M = 

0.76, SD = 0.13; b = −0.30, SE = 0.07, z = −4.29, p < .001) and 180 ° (M 

= 0.75, SD = 0.14; b = −0.34, SE = 0.07, z = −4.95, p < .001, see Figure 

1A, Panel A).

REACTION TIME
A linear mixed effects modelling (LMM) with response time (RT) 

as the dependent measure revealed the model of best fit to include a 

main effect of saccade congruency, χ2(2) = 66.63, p < .001, and cue 

validity, χ2(2) = 38.18, p < .001. Button press response times were faster 

when the saccade goal and discrimination target were congruent (M = 

722 ms, SD = 111) relative to at an angle of 90 °(M = 742 ms, SD = 110; 

b = 28.62, SE = 5.03, t = 5.70) or 180 ° (M = 764 ms, SD = 128; b = 41.35, 

SE = 5.06, t = 8.17). Response times were also faster when the cue was 

valid (M = 724 ms, SD = 109) compared to when cue appeared 90 ° (M 

= 751 ms, SD = 122; b = 25.07, SE = 5.05, t = 4.96) or 180 ° from the 

target (M = 754 ms, SD = 120; b = 28.58, SE = 5.06, t = 5.65).

SACCADE LATENCY
A LMM revealed the model of best fit to include a main effect of 

saccade congruency, χ2(2) = 113.00, p < .001, absolute time bin, χ2(3) 

= 16030.37, p < .001, and an interaction between saccade congruency 

and cue validity, χ2(4) = 121.33, p < .001. The main effect of time bin 

was unsurprising given that saccade latency defined the trials in each 

bin. The interaction between saccade congruency and cue validity is 

best understood as a conflict effect, where eye movements are slower to 

initiate away from the trial relative to towards.

FIGURE A1.

Proportion correct (Panel A), reaction time (in milliseconds, Panel B), and saccade latency (in milliseconds, Panel C) as a function of 
saccade congruency, cue validity, and absolute time bin. Error bars represent within-subject SEM.
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Linear Ballistic Accumulator 
Analysis

MODEL FIT
Figure 2 demonstrates that the selected linear ballistic accumulator 

(LBA) model provides a reasonable account of saccade congruency 

and cue validity on average accuracy and the distribution of RT. Figure 

2A, Panel A shows that the model provides a good account of error 

rate. Figure 2A, Panel B represents the distribution of RT in terms of 

the 10th percentile (representing the fastest responses), 50th percentile 

(representing the average responses) and the 90th percentile (repre-

senting the slowest RT). The account given is quite accurate, with ap-

preciable misfit only for the slowest RTs. This misfit may be the result 

of our task instructions emphasizing the accuracy of the task, rather 

speed, causing some rechecking of responses before responding on a 

minority of trials, a process that is not taken account of by the LBA 

model.

Linear Ballistic Accumulator 
Modeling of Saccade Latency

BAYESIAN SAMPLING METHODS
For each model, three times as many chains were used as model 

parameters. Sampling was carried out in two steps. First, sampling 

was carried out separately for individual participants in order to get 

reasonable start points for hierarchical sampling. The results of this 

step were then used as starting points for sampling the full hierarchi-

cal sample. During initial burn-in-period, there was a probability of 

.05 that a crossover step was replaced with a migration step. After 

burn-in, only crossover steps were used and sampling continued until 

the proportional scale reduction factor (R") was less than 1.1 for all 

parameters, and the multivariate version was less than 1.1 (Brooks & 

Gelman, 1998). Hierarchical estimation assumed independent normal 

population distributions for each model parameter. Population-mean 

start points were calculated from the mean of the individual-subject 

posterior medians and population SDs from their standard deviations, 

with each chain getting a slightly different random perturbation of 

these values. Hierarchical sampling used probability .05 migration 

steps at both levels of the hierarchy during burn-in, and only crossover 

steps thereafter with thinning set at 5 (i.e., only every 5th sample was 

kept), with sampling continuing until R" for all parameters at all levels, 

and the multivariate R" values, were all less than 1.1. The final set of 

chains were also inspected visually to confirm convergence.

PRIORS
Priors were chosen to have little influence on estimation. Priors 

were normal distributions that were truncated below zero for B, A 

and sv parameters, and truncated at 0.1 s for the T0 parameter (as-

suming that responses made in less than 0.1s are implausible). The t0 

parameter was truncated above by 1 s, and no posterior samples ever 

approached this limit. There were no other truncations, so the v prior 

was unbounded. The prior mean for B was 1 and for 0.5 for A. The v 

FIGURE A2.

Linear ballistic model fits to error rates (Panel A) and correct RT distribution (Panel B, 10th, 50th and 90th percentiles are lower, middle 
and upper lines respectively). The abscissa is cue validity and the panels are levels of saccade congruency. Error bars represent 95% CIs.

http://www.ac-psych.org


ADVANCES IN COGNITIVE PSYCHOLOGYRESEARCH ARTICLE

http://www.ac-psych.org2020 • volume 16(4) • 329-343343

parameter was given a prior mean of 1 and the sv parameter had a prior 

mean of 0.5. The T0 parameter had a prior mean of 0.3 s. All priors 

had a standard deviation of 2. Mean parameters of population distribu-

tions were assumed to have priors of the same form as for individual 

estimation, and the SDs of hyper parameters were assumed to have 

exponential distributions with a scale parameter of 1. Plots of prior 

and posterior distributions revealed strong updating (i.e., posteriors 

dominated priors), making it clear that the prior assumptions had little 

influence on posterior estimates.

MODEL FIT
Figure 3 displays the fit of the LBA model to the saccade latency data 

in terms of defective cumulative distribution functions (lines) and 10th, 

30th, 50th, 70th and 90th percentiles (points from left to right) averaged 

over participants. The thick black line and open points correspond to the 

data and the thin grey lines solid black points to the model prediction 

averaged over posterior samples. The grey points correspond to percentile 

predictions for 100 randomly selected sets of posterior parameter samples, 

so their spread gives an idea of the uncertainty in the model’s predictions. 

Figure 3 shows that the average fit of the selected LBA model was good.
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FIGURE A3.

Cumulative density functions. Starting at top left and moving clockwise, the panels represent trials where (a) the saccade goal and 
spatial cue coincide at the same left visual field (LVF) placeholder position, (b) the saccade goal is in the LVF and spatial cue appears at 
a visual angle of 180 ° from the saccade goal in the right visual field (RVF), (c) the saccade goal is in the LVF and the spatial cue appears 
at a visual angle of 90 ° from this location (placeholder above fixation), (d) the saccade goal and spatial goal are congruent and both 
appear in the RVF, (e) saccade goal is in the RVF and spatial cue appears at an angle of 180 ° (LVF), (f ) saccade goal is in the RVF and 
the spatial cue appears at an angle of 90 ° from it in the placeholder above fixation, (g) saccade goal and spatial cue both appear in 
the upward placeholder, and (h) the saccade goal is in the upward placeholder and the spatial cue appears either in the LVF or RVF.
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