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Though there has been immense progress in the field, early detection and reliable prediction of 
major depressive disorder (MDD) still remains a challenge. In the present study, we used multi frac-
tal analysis (MFA) to perform statistical analysis on fMRI resting-state data of depressed patients 
and normal controls to find out the singularity spectrum, an important tool of MFA, and derive 
various supporting attributes, leading to a quantification of the geometrical pattern formation in 
the brain. It was found, and reported for the first time, that the estimates of Hurst exponent and 
fractal dimension values vary significantly for the depressed subjects and normal controls, helping 
in detecting and predicting early signs of depression.
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INTRODUCTION

The key characteristic of major depressive disorder (MDD) is chronic 

and prevalent low mood. Several other variables determine the entire 

syndrome. They may be categorized into behavioral, emotional, neu-

rological, and biological characteristics. Extreme cases are related to 

psychotic characteristics (Cleare et al., 2012). Researchers have found 

that depression is accompanied by a large cognitive functional defect, 

which has been shown in issues with mental functioning such as plan-

ning ability, problem solving, working memory, and processing speed 

(Chakrabarty et al., 2016; Mitchell, 2016). However, other researches 

showed no significant variations between participants with or without 

depression (Grant et al., 2001). One study (Alloy & Abramson, 1979)

concluded that depressed patients at times are ”sadder yet smarter” than 

persons without a psychopathological background. The authors noticed 

that nondepressed people  displayed cognitive bias that promoted con-

structive interpretations of the self and the environment, while depressed 

people held a rational, though pessimistic, perception that probably con-

tributed to their negative mood (Alloy & Abramson, 1979). The use of 

resting-state functional magnetic resonance imaging (fMRI) to explain 

the pathophysiological processes causing affective and cognitive dysfunc-

tions in MDD is gaining prominence (Veer, 2010; Zeng et al., 2012). At 

rest, the default mode network and the affective network in depressive 

patients were shown to be abnormal (Sheline et al., 2010; Zeng et al., 
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2012; Zhou et al., 2010). In one study, depressed patients had a smaller 

left medial frontal pole, which was found to have a negative correlation 

with disease duration and severity. (Bludau et al., 2015). This suggests 

that MDD serves many biologically distinct disorders and a single 

marker could serve a function that encompasses all biological pathways 

to detect depression which could be extracted from brain signals. The 

signals captured by fMRI are highly dynamic and nonlinear. While re-

search has been conducted to access internal states through behavioral 

studies by the use of AI in autism (Bartlett et al., 2019), in case of MDD, 

such studies have shown encouraging preliminary results only and need 

further validation (Swan et al., 2014). 

The current study applied multi fractal analysis (MFA) for differen-

tiating between the fractality of MDD subjects and healthy controls. The 

MFA is the investigation of how a vector spreads through a geometric 

support, like a volume or fractal. In fact, multifractals are "infinite sets 

of exponents" that reflect the scale (power law) of all the moments of 

distribution of the quantities described by the fractal structure. The 

exponent is taken from a power law and used to describe and forecast 

an unexpected event during the analysis. This has been used to examine 

a variety of real-life situations, including foreign exchange data, cancer 

detection by probing multifractality in the tissue refractive index, and 

brain functional connectivity (Das et al., 2013, 2014; Schmitt et al., 1999; 

Varley et al., 2020).

Early research showed that spontaneous neuronal activity has 

scale-free characteristics, implying the resting-state blood-oxygen-level-

dependent (BOLD) signal's temporal complexity and fractality (Ciuciu 

et al., 2012; Friston et al., 2004). By describing the self-similarity of time 

courses, fractal dimension reflects scale-free characteristics. The Hurst 

exponent (H) is a metric of temporal dynamics' "long-term memory" that 

is usually correlated to the fractal dimension and measures the consistent 

or anti-persistent (past patterns appear to revert in the future) behavior 

of a time series. It decides whether the given time series is absolutely 

random or has any long-term memory. The predominance of long-term 

memory in cortical areas, indicating more usual dynamics, was indicated 

for early Alzheimer's disease (Maxim, 2005), whereas a change to lower 

H was showed to indicate autism (Lai et al., 2010). The above results 

clearly demonstrate the significance of understanding natural and abnor-

mal neuronal mechanisms with scale-free properties of intrinsic neural 

activity which can be investigated using Hurst exponents.

Here, we used resting-state fMRI data from patients with MDD 

and healthy controls, which exposed inherent, random networks that 

illustrate the brain's functional architecture, to compare their BOLD 

signals. We preprocessed the data for estimation and elimination of noise 

components to prevent spurious associations based on non-neuronal 

sources, and we performed a further connectivity analysis for regions of 

interests (ROI) to estimate the correlations for each pair of source and 

ROI by temporal-filtering and windowing the BOLD data which, in 

turn, provided a hemodynamical contrast signal for the voxel of interest 

(VOI) for both MDD and control patients. Through an examination of 

the fractality and persistency of the BOLD time series, we hypothesized 

that the ruminative nature of depression would be represented in the 

hemodynamical response of the left frontal pole.

MATERIALS AND METHODS

The fMRI data of 30 subjects were taken out of 72 subjects with age 

ranging from 19 to 50 years, of both genders, and having demographic 

similarity, from a study by Bezmaternykh et al. (2020). Out of 30 sub-

jects, 15 were diagnosed with MDD and the rest of them were assigned 

as controls with no history of MDD. Resting-state fMRI data with 

closed eyes along with structural MRI data were collected at a session 

consisting of 100 dynamic scans with the repetition time of 2.5 s and 

25 slices with structural images at 1 mm isotropic resolution in the sag-

ittal plane. Resting-state studies of sporadic fluctuations in the fMRI 

BOLD signals have shown advances in mapping the broad inherent 

functional architecture of the brain. Regions with identical functional 

connectivity, even in the absence of external sensory input or motor re-

sponse, display temporally coherent BOLD fluctuations (Beckmann et 

al., 2005; Biswal et al., 1995; Cordes et al., 2000). Negative associations 

between brain regions with theoretically opposing functional roles 

have also been studied (Fox, 2005; Fransson, 2005; Kelly et al., 2008).

fMRI Preprocessing and Functional 
Analysis
The resulting fMRI images were preprocessed using the CONN func-

tional connectivity toolbox (Whitfield & Nieto, 2012), which uses sta-

tistical parametric mapping (Friston et al., 2007) and MATLAB (v9.3.0, 

2017). Head motion artifacts, in addition to physiological distortions, 

have been demonstrated to have a considerable impact on intrinsic 

functional connectivity measures (Satterthwaite et al., 2012; Van Dijk 

et al., 2012). The subjects' mean and maximum motion of the head in-

side the scanner were computed (see Table 1). The fact that depressed 

subjects had more motion than controls suggests that motion-related 

changes in brain connectivity are not entirely due to motion artefacts, 

but rather represent individual differences in functionality (Van Dijk et 

al, 2012; Zeng et al, 2014).  

The functional data was realigned and unwarped, with all scans 

coregistered and rescaled to a reference image utilizing b-spline interpo-

lation (Anderson et al. 2001), which addresses potential distortion-by-

motion interactions by calculating the derivatives of the displacement 

with respect to head motion and rescaling the functional data to fit the 

reference image's displacement field (see Figure 1). Using sinc interpo-

lation resampling and time-shifting, slice-timing correction (Henson et 

al. 1999) was utilized to correct the temporal misalignment between the 

different slices of functional data. After that, from the observed global 

BOLD signal, potential outlier scans were detected and framewise dis-

placement was estimated at each timepoint, with the signal scaled to SD 

units. The functional and structural data were then separated into grey 

matter, white matter, and cerebrospinal fluid tissue classes after being 

normalized into standard Montreal Neurological Institute (MNI) space 

(see Figure 2; see also Ashburner & Friston, 2005). 

Component-based noise correction was used to introduce denois-

ing. The CompCor (Behzadi et al., 2007) technique was used to extract 

the signal's first five principal components from the white matter and 

cerebrospinal fluid masks, as well as six motion parameters and their 
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first order temporal derivatives, a linear detrending term, and smooth-

ing. As compared to approaches that focus on global signal regression, 

the CompCor noise reduction approach allows for the identification 

of anticorrelations because no global data is regressed, increasing the 

fMRI analysis' sensitivity and selectivity. Denoising was achieved with 

a band-pass filter size of [0.008, 0.09] Hz and a 6 mm smoothing kernel. 

Additionally, movement and temporal covariates were removed, and 

the residual BOLD time series was temporal filtered and windowed.

First level functional connectivity analyses were performed for 

all ROIs and seed-to-voxel analyses to generate a hemodynamical re-

sponse function weighted generalized linear modelling (GLM) using 

bivariate correlation, which has been computed separately for each pair 

of source and target ROIs.

Estimation of Singularity Spectrum
A continuum of exponents is needed to define a dynamical monofrac-

tal or multifractal system, known as a singularity spectrum. The range 

of points is measured by a specified regularity exponent α, known as 

the Hölder exponent (McCauley, 1993), when the output spectrum f(α) 

is generated, which is defined by

(1)

where μ(box) is the measure of the box, and ε is the dimension of the 

box. α values are similar to the respective fractal dimension of the dy-

namical system observed. The local Hölder exponent at a certain time 

quantifies the local scaling properties of the process (local divergence). 

In other words, the local regularity of the process is calculated. The 

distribution of Hölder exponents degenerates in conventional time 

series models and converges to a single point, whereas multi-fractals 

are defined by a continuum of Hölder exponents. We can count boxes 

having dimension ε for every α value with its rough estimate of Hölder 

exponent equal to α and take the value as Nε(α). Then, the Hausdorff 

dimension for α distribution is characterized as

(2)

The singularity spectrum is the curve spanning fractal dimensions 

such as, the one expressed in Equation 2 and Hölder's exponent 

α, where the breadth of the ∆αε spectrum captures the shape of the 

multifractal continuum of singularities and determines the probability 

distribution, and the ∆fε dimension difference quantifies the fractals' 

self-similarity (Saha et al., 2020). In the case of monofractals, the 

spectrum converges in a one-point source but becomes a bell-shaped 

structure with downward roots for a multifractal scheme. The value of 

α provides local information on pointwise continuity, while the value 

of fε(α) provides global information.

Thus, the greater the value of Δα, the greater the likelihood of 

self-similarity increases at different geometrical scale. This suggests 

coherence of the neuronal firings in the brain, since higher fractal 

dimension Δf(α) is a marker of richer geometry or texture, resulting in 

richer patterns. In turn, this suggests uniformity at different neurologi-

cal scales. Therefore self-similarity can be established in the fMRI data 

considered. 

The current study was based on the measurement of Hölder expo-

nent at  each point of the BOLD time series to obtain the singularity 

spectrum for each subject. The MFA was carried out using the FracLab 

package in MatLab for generating the Hölder exponents for the time 

series and plotting the Legendre spectrum (Véhel & Legrand, 2004).

Estimation of Hurst Exponent:
We followed the rescaled range approach (R/S, Mandelbrot & Wallis, 

1968) for calculating the Hurst exponent, which varies on the power 

law (Suyal et al., 2009).

(3)

Where k is the constant, w is the width of the time window, and S is the 

standard deviation of the independent variable xi, within the window 

w, which is given by

(4)

with the average value of the independent variable xi as,

(5)

and R, the range in the time-series, defined as

(6)

With the new variables yi, i = 1,2,3,…,w as

(7)

TABLE 1.  
Subjects' Demographic Data along with Mean and Maximum 
Head Motion inside the MRI Scanner Disregarding Outlier Scans

Subject Category Age/Gender
Mean Head 

Motion
Max Head 

Motion
1 MDD 50 / M 0.06 0.12
2 MDD 32 / F 0.08 0.31
3 MDD 26 / F 0.07 0.18
4 MDD 28 / F 0.08 0.17
5 MDD 28 / M 0.07 0.33
6 MDD 52 / F 0.13 1.27
7 MDD 24 / M 0.19 0.19
8 MDD 28 / M 0.09 0.16
9 MDD 29 / F 0.15 1.39
10 MDD 34 / F 0.09 0.52
11 MDD 44 / F 0.05 0.12
12 MDD 31 / F 0.09 0.33
13 MDD 28 / M 0.06 0.18
14 MDD 45 / F 0.09 0.24
15 MDD 47 / F 0.10 1.13
16 Control 32 / M 0.04 0.15
17 Control 44 / F 0.11 0.49
18 Control 26 / F 0.15 0.31
19 Control 31 / F 0.06 0.38
20 Control 31 / M 0.07 0.27
21 Control 47 / F 0.04 0.12
22 Control 31 / M 0.04 0.32
23 Control 24 / F 0.09 0.43
24 Control 34 / F 0.07 0.21
25 Control 30 / F 0.11 0.49
26 Control 39 / M 0.12 0.79
27 Control 37 / F 0.11 0.41
28 Control 43 / F 0.06 0.15
29 Control 34 / F 0.09 0.58
30 Control 52 / F 0.09 0.23
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FIGURE 1.

Single slice montage of structural MRI of the subjects in x-y plane after the realignment of scans co-registered and rescaled to a reference 
image utilizing b-spline interpolation.

FIGURE 2.

Single slice of structural MRI of Subject 13 with overlay of grey matter, white matter, and cerebrospinal fluid tissue class segmentation 
after being normalized into standard Montreal Neurological Institute space.
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For different time instances, (R/S) is calculated and averaged in for ep-

ochs and plotted against  w on a log-log axis (Constantine & Percival, 

2017). The slope of the linear regression gives the value of H which 

lies between the values of 0 and 1. A value of H = 0.5 represents a pure 

random walk/Brownian motion of the time series. An H between 0.5 

and 1.0 denotes a consistent time series. A greater H than that means 

that the time series has a higher long-term positive autocorrelation and 

a longer memory, that is, more frequent or consistent deviations. Anti-

persistence is indicated by an H between 0 and 0.5, and random time 

series is indicated by an H more or less equal to 0.5 (Suyal et al., 2009).

Estimation of Fractal Dimension
A fractal dimension is a metric for quantifying the complexity of 

fractal patterns or sets by comparing the change in complexity to the 

change in size. It is described as a rough or fragmented geometric form 

that can be subdivided into smaller sections (Li et al., 2002; Falconer, 

2007). Fractal systems (such as time series) do not have a single time 

scale, just as fractal structures do not have a single length scale (Li et 

al., 2002). Fractal theory provides tools for explaining natural objects' 

intrinsic irregularity. The fractal dimension, denoted by D, is a constant 

parameter that characterizes this theory (Li et al., 2002). The common 

definition of fractal dimension, D being a special case, based on the 

covering method (Farshad & Ahmadi, 1974; Kaplan & Glass, 1996) as 

ε >0, an ε -cover of X is a finite collection of spherical balls Bi∁Rd of a 

diameter |Bi| ≤ ε that covers X

(8)

Where i = 1,2,3,…,Hδ(X) denotes the δ-dimensional Haursdoff 

(Falconer, 2007; Grassberger & Procaccia, 1983) measure of X, there 

exists a nonnegative value D such that Hδ (X) = ∞ if δ < D and Hδ(X) 

= 0 if δ > D. The Hausdorff dimension coincides with the box-count 

dimension under weak regularity conditions (Kaplan & Glass, 1996), 

that is,

(9)

Where N(ε) denotes the smallest number of cubes of width ε in Rd 

which can cover X. The basic concept is straightforward: a single box 

covers the time series graph initially. After the box is split into four 

quadrants, the number of cells needed to cover the curve is calculated. 

The next quadrant is divided into four sub-quadrants, and so on until 

the box width equals the data resolution, keeping track of the number 

of quadrants needed to cover the graph at each point. The box-count 

estimator equals the slope in an ordinary least squares regression t of 

logN(ε) on log(ε) if N(ε) denotes the number of boxes needed at width 

or scale ε (Farshad & Ahmadi, 1974).

RESULTS AND DISCUSSION

After generating cluster-based inferences for both MDD patients and 

healthy controls by implementing Gaussian random field theory para-

metric statistics in group-level seed-to-voxel connectivity measures 

(bivariate correlation), we observed major differences in functional 

BOLD activation in the left frontal pole cortex (see Figure 3).

Taking the left frontal pole cortex as the candidate for fractal analysis 

due to its high variance, multivariate BOLD time series was extracted 

for the largest VOI cluster having a size of 21796 voxels for healthy 

controls and 20092 voxels for MDD subjects. Also, high anticorrelat-

ing functional connectivity differences were seen in the inferior frontal 

gyrus among MDD patients and healthy controls. The inferior frontal 

gyrus is responsible for language processing and speech production, 

and this result needs to be investigated further. 

The Hölder exponent α for all subjects was determined (see Figure 

4). The f(α) was higher for healthy controls than for MDD patients (see 

Table 2), which shows that, in case of controls, coherency of fractality 

across different dimensions was higher, and it was greatly reduced in 

case of MDD patients.

Furthermore, for the MDD patients, the fractal dimension D was 

more random because of a larger degree of freedom shown by the sys-

tem. For controls, however, due to the lower randomness, the fractal 

dimension was smaller. The Hurst Exponent H also indicated directly 

that the MDD time series were more random and less persistent.

The number of degrees of freedom exhibited by a physical system is 

widely used to determine its complexity. However, it is necessary to differen-

tiate between theoretical value and effective degrees of freedom showing up. 

Despite the fact that there might be many degrees of freedom avail-

able for the system, the mechanics of the system will coordinate the mo-

tion into just a few effective ones by self-organization. Self-organization 

occurs in dissipative dynamical systems with fewer degrees of freedom 

than are nominally available after transient action. The system is drawn 

to a lower-dimensional phase space, whose dimension reflects the 

number of active degrees of freedom in the self-organized system. A 

system that appears to be complex can actually stabilize into a chaotic 

yet low-dimensional state. The reason for quantifying chaos is to dif-

ferentiate irregular but low-dimensional behavior from completely 

irregular behavior, which is stochastic in nature, possessing many effec-

tive degrees of freedom. The main motivation for estimating the fractal 

dimension for the MDD and control subjects was to see if depression 

leads to increased degrees of freedom of the depressed mind-state and 

a drop in the self-organizational properties as evident from D and f(α).

To sum up, the results from fractal dimension, Hurst exponent 

and Holder’s exponent complement each other to add to our existing 

understanding that MDD can lead to changes in the fractality of the 

brain, leading to more randomness of neural firings and thus an in-

crease in the fractal dimension when compared to healthy controls. A 

Hurst exponent of 0.5 also indicates Brownian motion / random walk 

of the time series, as a result of loss of brain persistence, when the sub-

ject loses information, requiring higher degrees of freedom and hence 

higher dimensional fractality. 

TABLE 2.  
Singularity Spectra Parameters, Fractal Dimension, Hurst Expo-
nent Estimations

Subject State Δf(α) Δα
Fractal 

dimension (D)
Hurst 

exponent (H)
Control 0.52 0.44 1.2 0.742
MDD 0.19 0.59 1.6 0.582
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FIGURE 3.

Multi-slice display showing the left-frontal-pole functional blood oxygen level dependent activation maps of major depressive disorder 
subjects having voxel size 20092 and Montreal Neurological Institute coordinates (36,30,40; left panel) and control subjects having voxel 
size 21796 (right panel) and coordinates (20,60,-10) calculated from group-level seed-to-voxel connectivity measures (bivariate correlation).

FIGURE 4.

Legrende spectrum for major depressive disorder (MDD) and control subjects plotted between values of Hausdorff dimension 𝑓𝜀(𝛼) and 
Hölder’s exponent α, for which the width of the ∆α

ε
 spectrum captures the form of the multi-fractal continuum of singularities and defines 

the distribution of probabilities

CONCLUSIONS

We used MFA to perform a statistical analysis on fMRI resting-state 

data from depressed patients and healthy controls, evaluating the 

fractal dimension, Hurst exponent and Holder’s exponent, in order to 

quantify the geometrical pattern formation in the brain. It has been 

discovered that in the case of MDD, the fractality of the BOLD time 

series decreases. The Hurst exponent and fractal dimension estimates, 

on the other hand, indicate that in the case of MDD, the randomness or 

unpredictable aspect of the time series increases, reducing the fractal 

richness of the patterns. This quantification may be used for modelling, 

aiding rapid diagnosis of depression.
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