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Automatic and strategic processes in semantic priming can be investigated with masked and un-
masked priming tasks. Unmasked priming is thought to enable strategic processes due to the con-
scious processing of primes, while masked priming exclusively depends on automatic processes 
due to the invisibility of the prime. Besides task properties, interindividual differences may alter 
priming effects. In a recent study, masked and unmasked priming based on mean response time 
(RT) and error rate (ER) differed as a function of the BDNF Val66Met polymorphism (Sanwald et al., 
2020). The BDNF Val66Met polymorphism is related to the integrity of several cognitive executive 
functions and might thus influence the magnitude of priming. In the present study, we reanalyzed 
this data with drift-diffusion models. Drift-diffusion models conjointly analyze single trial RT and ER 
data and serve as a framework to elucidate cognitive processes underlying priming. Masked and 
unmasked priming effects were observed for the drift rates ν, presumably reflecting semantic pre-
activation. Priming effects on nondecision time t0 were especially pronounced in unmasked prim-
ing, suggesting additional conscious processes to be involved in the t0 modulation. Priming effects 
on the decision thresholds a may reflect a speed-accuracy tradeoff. Considering the BDNF Val66Met 
polymorphism, we found lowered drift rates and decision thresholds for Met allele carriers, possibly 
reflecting a superficial processing style in Met allele carriers. The present study shows that differ-
ences in cognitive tasks between genetic groups can be elucidated using drift-diffusion modeling.
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INTRODUCTION

Access to semantic word meaning can be investigated with the seman-

tic priming paradigm. In semantic priming, the response to a target 

word is facilitated if it is preceded by a semantically related prime word 

(Neely, 1991; Neely, 1976). Semantic priming is frequently observed 

within lexical decision tasks (Meyer & Schvaneveldt, 1971). This 

paradigm asks the participants to decide whether a target is an exist-

ing word or not. The target words are preceded by either semantically 

related or unrelated prime words. If the target is preceded by a semanti-

cally related word, the response is typically faster and less error prone 

(Neely, 1991). 

Automatic and strategic processes are thought to contribute to 

semantic priming effects. Possible mechanisms involved in automatic 

semantic processing are spreading activation (Collins & Loftus, 1975) 

and preactivation of semantic features (Masson, 1995; Plaut, 1995). 

Spreading activation refers to semantic network models (Collins & 

Quillian, 1969). If a concept (e.g., the prime) is processed, the activation 

of its node in the semantic network spreads to strongly related nodes 

(e.g., the target), which facilitates processing of the related concepts 

(Collins & Loftus, 1975). According to the preactivation of semantic 

features, it is assumed that the semantic features of the prime are still 

activated while the target is processed. If there is an overlap of the fea-

tures associated with the target with those associated with the prime, 

the meaning of the target can be processed faster (Masson, 1995; Plaut, 

1995). Given the assumption of a simultaneous activation of the prime 

and target properties, these processes are thought to predominate at 
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short stimulus onset asynchronies (SOAs) between the prime and 

target (Neely, 1991). On the other hand, examples for strategic pro-

cesses are expectancy generation and semantic matching. Expectancy 

generation describes a strategy where according to the prime, a set of 

possible candidate targets is generated. If the following target is part 

of this set of candidates, the response is facilitated (Neely et al., 1989; 

Posner & Snyder, 1975). Semantic matching is thought to occur after 

the target word has been lexically accessed (Neely et al., 1989). If target 

and prime word are semantically related, it is likely that the target is a 

real word facilitating the lexical decision (e.g., den Heyer et al., 1985; 

Neely, 1977; Seidenberg et al., 1984). To distinguish between different 

processes involved in semantic priming, the visibility of the prime can 

be manipulated.

Drift-Diffusion Models
The drift-diffusion model (Ratcliff, 1978) can be used as a framework 

to investigate different processes involved in two-choice decision tasks 

(for an overview, see Voss, Nagler et al., 2013). It offers the advantage 

of a joint analysis of single trial RT and accuracy data. Drift-diffusion 

models have already been successfully applied to elucidate the pro-

cesses underlying priming (e.g., Gomez et al., 2013; Ratcliff & McKoon, 

1988; Voss, Rothermund et al., 2013). 

Drift-diffusion models include four main parameters, the drift rate ν, 

the decision threshold a, the nondecision time t0 and the starting point 

z (see Figure 1).

The basic assumption of the model is that information accumu-

lates until a decision threshold is reached and the response is initiated 

(Ratcliff & McKoon, 2008; Voss et al., 2004; Voss, Nagler, et al., 2013). 

This information accumulation is called drift and is represented by 

the drift rate ν. According to its application to describe two-choice 

decision tasks, there are two decision thresholds representing the 

two possible responses. Typical examples for dichotomous decisions 

require participants to decide between a word and nonword stimuli, 

for example. Alternatively, dichotomous response categories can be 

achieved by coding the responses as correct and incorrect. The pa-

rameter a represents the distance between both thresholds, that is, 

the amount of information needed to separate the two decisions. The 

nondecision time t0 reflects processes not involved in the information 

accumulation process, for example, perceiving a stimulus or executing 

the response. It is also possible to vary the starting point z, that is, the 

position between both thresholds where the drift starts, modeling a 

possible bias towards one response category. Response categories can 

be set to correct and incorrect responses in tasks where an a priori bias 

for response alternatives is unlikely. As there cannot be a bias towards 

a correct response (as correctness is evaluated after the response), z can 

be fixed to a/2 in such tasks (Voss, Nagler, et al., 2013). In the current 

study,we only modeled responses to the word targets consistent to the 

previous analyses of RTs and ERs in Sanwald et al. (2020). Therefore, 

a different a priori bias towards a response should be ruled out, as 

the correct response is the same across relatedness conditions (word 

response). Word targets in the different relatedness conditions were 

matched for word length and word frequency (Kiefer, 2002; Kiefer et 

al., 2005), rendering differences in the tendency to respond to these 

targets between the relatedness conditions unlikely. The drift-diffusion 

model response categories were therefore set to correct and incorrect 

responses to word targets (correct response: word; incorrect response: 

nonword) and z was fixed to a/2.

To gain further insight into the processes which the drift-diffusion 

model parameters index, one can consider the factors influencing these 

parameters. The magnitude of drift rate ν changed with stimulus dif-

ficulty (Ratcliff & McKoon, 2008; Voss et al., 2004; Voss, Nagler, et al., 

2013) and individual differences in working memory and intelligence 

(Schmiedek et al., 2007). Manipulating the response criterion by differ-

ent instructions (speed vs. accuracy) influenced the decision threshold 

a (Ratcliff & McKoon, 2008; Voss et al., 2004). Another example are 

slower RTs in elderly people, which were shown to be related to a more 

conservative response criterion and, therefore, a larger parameter a 

(Ratcliff et al., 2000, 2006). An elevated difficulty of the motor response 

(Voss et al., 2004) as well as task switching (Schmitz & Voss, 2012) in-

creased the nondecision time t0. Encoding processes are also thought 

to contribute to the processes involved in t0 (Voss, Nagler, et al., 2013).

Only a few studies considered the influence of semantic priming on 

the drift-diffusion model parameters. Furthermore, findings and 

corresponding interpretations are diverging. One earlier study (Voss, 

FIGURE 1.

Visualization of the drift-diffusion model. The drift-diffusion 
model assumes that information accumulates in a (noisy) 
drift process until one of two thresholds is reached and the 
response is initiated. The respective response time (RT) distri-
butions for the correct and incorrect responses are depicted 
above the upper and below the lower threshold. The drift 
parameter ν represents the average drift rate across trials, that 
is, the speed of information accumulation. The green and red 
lines show examples for the drift process of a single trial. The 
decision threshold a represents the amount of information 
needed to separate both thresholds. The nondecision time t0 
includes processes not involved in the decision process. These 
processes can occur before the decision process (e.g., encod-
ing processes) and afterwards (e.g., response execution). Only 
the nondecision processes before the decision process are 
shown. The starting point z is fixed to a/2 in this example; no a 
priori bias towards one response is expected.
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Rothermund, et al., 2013) investigated unmasked semantic prim-

ing with a lexical decision task. It found an overall effect of semantic 

relatedness on ν, indicating an “improved […] accessibility of targets 

and their semantic features” (Voss, Rothermund, et al., 2013, p. 553). 

Additionally, unexpected by the authors, in one of the two experiments 

using a lexical decision task, t0 was also shorter for related primes, 

rendering further processes possible to be included in unmasked prim-

ing (Voss, Rothermund, et al., 2013). The t0 modulation in unmasked 

priming is thought to index conscious processing of primes. Different 

studies suggested different processes for this effect on t0, that is, the 

confirmation of the affirmative response in related prime-target pairs 

(Klauer & Musch, 2002; Voss, Rothermund, et al., 2013; Wentura, 

2000) and a postlexical backward matching strategy (Kiefer et al., 2020; 

Neely et al., 1989).

In contrast, another study (Gomez et al., 2013) reported that 

masked priming solely influenced the nondecision time t0, while un-

masked priming influenced both t0 and ν. This pattern indicates t0 is 

the crucial parameter for priming effects, as t0 was influenced in both 

masked and unmasked conditions. Following the modulation of t0 in 

masked priming, which should rule out conscious processes, Gomez 

et al. hypothesized t0 to represent an encoding facilitation process. 

Nevertheless, it remains unclear if masked priming mainly bears on 

encoding facilitation. Since the priming effect on response times (re-

lated–nonrelated primes) for the masked paradigm did not reach sig-

nificance, Gomez et al. in fact did not observe significant masked prim-

ing at all. Therefore, it is unclear how reliable the effects in the masked 

priming paradigm were. The lack of an effect on ν in the masked prim-

ing paradigm could be a consequence of the quite high prime duration 

(56 ms) and the lack of a backward mask. According to this design, 

participants could have been (partly) aware of the primes, which could 

diminish priming effects for partly visible masked primes due to an 

inhibition mechanism (Bodner & Masson, 2003; Carr & Dagenbach, 

1990; Durante & Hirshman, 1994; Fischler & Goodman, 1978). 

A more recent study tested the retest reliability of the drift-diffusion 

model parameters (Lerche & Voss, 2017), including an assessment of 

unmasked semantic priming at two time points. Lerche and Voss re-

ported a statistically significant effect on drift rates at both time points. 

Additionally, there was a small, but not statistically significant effect on 

the nondecision time, indicating a shortened t0 in related prime-target 

pairs.

To sum up, semantic relatedness consistently influenced the drift 

rates in unmasked priming. There are also hints for shortened nondeci-

sion times in the related condition in unmasked priming, but there is 

little agreement on the size of this effect. As, to our knowledge, only one 

study examined drift-diffusion model parameters in masked semantic 

priming (Gomez et al., 2013), it is even harder to draw conclusions for 

the masked priming condition. Table 1 provides an overview of the 

effect sizes (Lakens, 2013) for all three studies. The priming effects on 

drift rate (in unmasked priming) show the largest effect sizes, while 

the effect sizes for the nondecision times vary from small to medium 

to large. The effect on t0 in unmasked priming and the effect on all 

parameters in masked priming therefore need further investigation.

Interindividual Differences in 
Semantic Priming and Their 
Relation to Molecular Genetics
Although unmasked and masked priming effects have been reliably 

observed in a variety of studies, there are interindividual differences 

in the magnitude of priming effects, which depend on various factors. 

For example, priming was shown to be influenced by the integrity of 

executive functions, showing increased priming for subjects with low 

executive functions (Kiefer et al., 2005; Moritz et al., 1999), and type of 

mood states (Hänze & Hesse, 1993), with good mood associated with 

increased priming. Priming effects have also been found to be altered 

in mental disorders such as schizophrenia (Kiefer et al., 2009; Kwapil 

et al., 1990; Moritz et al., 2003; Spitzer et al., 1993).

In order to elucidate interindividual differences in semantic prim-

ing, genetic influences have been considered in the past (Reuter et al., 

2009). Based on the assumed relation between executive functions 

and the magnitude of priming, we recently investigated whether the 

BDNF Val66Met polymorphism, which was shown to be related to 

executive functions (Egan et al., 2003), influences semantic priming 

(Sanwald et al., 2020). 

The brain-derived neurotrophic factor (BDNF) is a secretory neu-

rotrophin (Barde et al., 1982) which is thought to play a role in the 

growth and survival of neurons and the regulation of synaptic trans-

mission (Lu, 2003; Martinowich et al., 2007). The BDNF Val66Met 

polymorphism manifests in the substitution of the amino acid valine 

TABLE 1.  
Effect Sizes for the Studies On the Effect of Semantic Priming 
on Drift-Diffusion Model Parameters 

Study
Masking 
condition Parameter Cohen's d

Gomez et al. (2013)*
masked

ν no data
t0 −0.494

unmasked
ν 0.576
t0 −0.493

Voss et al. (2013): 
Experiment 1a masked

ν 0.776
t0 −0.078

Voss et al. (2013): 
Experiment 3a unmasked

ν 0.397
t0 −0.220

Lerche & Voss (2017): 
Study 2, Session 1 masked

ν 0.768
t0 −0.071

Lerche & Voss (2017): 
Study 2, Session 2 unmasked

ν 0.672
t0 −0.071

Note. Only results for word targets are shown. Cohen's d effect sizes were 

calculated by subtracting the related minus the nonrelated conditions 

and dividing through the mean SD of both conditions. 

* Gomez et al. (2013) did not report parameter values and their ac-

cording SDs. The effect sizes for their paper are therefore calculated 

using the t-values of the reported significance tests with the formula 

d = t/sqrt(N) (Lakens, 2013). Also note that the t values for t0 were 

multiplied with −1, as Gomez and colleagues reported the compari-

son of nonrelated-related.
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(Val) to methionine (Met) at codon 66 of the BDNF molecule (Hall 

et al., 2003; for the molecular details see Sanwald et al., 2020). The 

Met allele is thought to be related to impaired BDNF secretion (Egan 

et al., 2003) and to cognitive impairment in several domains. For ex-

ample, Met allele carriers were associated with reduced hippocampus 

volume (Bueller et al., 2006; Montag et al., 2009; Montag, Schoene-

Bake, et al., 2010) and reduced prefrontal cortex volume (Montag et 

al., 2009; Pezawas et al., 2004). Semantic priming as well as executive 

functions showed overlapping neural correlates within the prefrontal 

cortex (Norman & Shallice, 1986; Ulrich et al., 2013, Ulrich et al., 

2014; Wagner et al., 2001), rendering BDNF Val66Met a potentially 

influencing candidate, as the projections between hippocampal and 

prefrontal regions were shown to influence cognition and memory 

(Laroche et al., 2000). However, note that in the Caucasian population, 

the Met allele occurs more seldom and, therefore, in many studies 

66Met+ carriers (Val/Met and Met/Met combined) are tested versus 

66Met- carriers (Val/Val). 

However, considering the phenotypic influence of BDNF 

Val66Met on cognition, the literature shows heterogeneous results. To 

mention some example findings; the Met allele has been associated 

with inferior episodic memory (Egan et al., 2003) as well as impaired 

visual iconic (Beste et al., 2011) and long-term memory (Montag et 

al., 2014). In contrast, the Met allele was related to reduced Stroop 

interference (Gajewski et al., 2012) and enhanced task switching 

(Gajewski et al., 2011). In both tasks (Gajewski et al., 2011, 2012), 

Met allele carriers showed overall faster RTs and fewer errors, that 

is, better task performance. As a consequence of such heterogene-

ous results, there was no meta-analytically determinable influence of 

BDNF Val66Met on several cognitive phenotypes, including executive 

functions (Mandelman & Grigorenko, 2012). Nevertheless, recent 

meta-analyses investigating the influence of BDNF Val66Met on 

cognition in more specific domains reported several influences. Met 

allele carriers showed increased cognitive impairment in patients with 

Parkinson’s disease (Wang et al., 2019; Yin et al., 2019), and an adverse 

influence of the Met allele on declarative memory and hippocampal 

volume (Kambeitz et al., 2012). Note that a more recent meta-analysis 

(Harrisberger et al., 2014) suggested the influence of the Met allele on 

hippocampal volume to be smaller than reported by Kambeitz et al.. 

To sum up, the influence of BDNF Val66Met on cognition is still a 

highly debated field of research. 

Given the possible relation of the BDNF Val66Met polymorphism 

and executive functions, we investigated in an earlier study the influ-

ence of this polymorphism on semantic priming  including possible 

moderators (Sanwald et al., 2020). We used masked (Kiefer, 2002) 

and unmasked (Kiefer et al., 2005) versions of the semantic priming 

paradigm to analyze individual differences as a function of the BDNF 

Val66Met polymorphism in unconscious and conscious process-

ing conditions, respectively (see also Reuter et al., 2009). Therefore, 

as the primary goal was to investigate interindividual differences in 

priming, and not to directly compare the magnitude of masked versus 

unmasked priming, both priming paradigms differed. In the masked 

priming paradigm, directly semantically related and nonrelated prime 

target pairs were presented, whereas in the unmasked version, an 

additional condition with indirectly related primes was included to 

investigate the depth of semantic activation across different semantic 

distances (McNamara, 1992). An example for an indirectly related 

prime-target pair is lemon-sweet, which are semantically connected 

through the mediating link sour. Unmasked priming in the indirectly 

related condition has been shown to be particular sensitive to differ-

ences in working memory and psychopathological states (Kiefer et al., 

2005; Spitzer et al., 1993). Furthermore, in the masked version prime 

duration was very brief (33.5 ms) to ensure unconscious process-

ing (Breitmeyer, 2007), which was additionally tested with a prime 

identification test. In the unmasked version, a longer prime duration 

(200 ms) was used to facilitate conscious prime recognition in cor-

respondence with earlier work (Kiefer et al., 2005; Spitzer et al., 1993). 

Capacity of executive functions in the participants was tested with a 

digit span backward test.

In the masked priming paradigm, an influence of the BDNF 

Val66Met polymorphism on priming was found. However, the pat-

tern of results was reversed for RT and ER data: Met allele carriers 

showed reduced RT priming, but increased ER priming compared to 

Val/Val homozygotes. Furthermore, priming effects were not related 

to differences in executive functions, because BDNF Val66Met groups 

did not differ in the digit span backward task performance, and digit 

span performance did not correlate with the magnitude of priming. In 

the unmasked priming paradigm, performance did not significantly 

differ between BDNF Val66Met groups, albeit RT and ER differences 

pointed in the same direction as in the masked version. Given that 

associations with executive functions were absent, we hypothesized 

the elevated ER priming and reduced RT priming in the Met allele 

carriers during masked priming to indicate a more superficial process-

ing style compared to Val/Val homozygotes (Sanwald et al., 2020). We 

hypothesized that Met allele carriers process the targets more rapidly, 

but also more erroneously, without indepth semantic analysis. An 

overall higher ER in Met allele carriers favored this explanation. An 

analysis of the data with drift-diffusion models should reveal how 

the observed pattern in RT and ER is reflected by the parameters of 

the drift-diffusion model. To be more precise, we wanted to assess 

whether the post-hoc explanation of a superficial processing style of 

Met allele carriers based on RT and ER data is in line with the results 

of a drift-diffusion model analysis.

Aim of the Study
The aim of this study was to decompose the mechanisms underlying 

the influence of the BDNF Val66Met polymorphism on masked and 

unmasked semantic priming. We applied drift-diffusion model analy-

ses to the data of our recent study (Sanwald et al., 2020) to elucidate 

the cognitive processes involved in the semantic priming tasks. Given 

the diverging priming pattern in the RT and ER data, drift-diffusion 

model analyses were used to identify the underlying processes. Drift-

diffusion model analyses have the advantage of a conjoint analysis of 

single trial RT and accuracy data and, therefore, might be more sen-
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sitive to reveal influences of the BDNF Val66Met polymorphism on 

priming also in the unmasked condition.

In both masked and unmasked priming, we hypothesized the drift 

rate ν would be generally influenced by semantic relatedness indicat-

ing semantic preactivation (Lerche & Voss, 2017; Voss, Rothermund, 

et al., 2013) with larger drift rates in the related conditions. In 

unmasked priming, drift rates should increase with increasing se-

mantic relatedness from unrelated, over indirect to direct semantic 

relations. According to larger priming effects in unmasked priming 

tasks (Kiefer, 2002; Kiefer & Spitzer, 2000), we expected a larger ν 

modulation in unmasked than in masked priming. As task instruction 

(Ratcliff & McKoon, 2008; Voss et al., 2004) and individual response 

criterion (Ratcliff et al., 2000, 2006) are not supposed to be influenced 

by masking and semantic relatedness, the decision threshold a should 

not change over the different masking and relatedness conditions. As 

the reported influences of semantic relatedness on the nondecisional 

parameter t0 are diverging (Gomez et al., 2013; Lerche & Voss, 2017; 

Voss, Rothermund, et al., 2013), it is difficult to predict the effect on 

t0. Nevertheless, such an effect should manifest in shorter nondecision 

times in related prime-target pairs. We expected an influence on t0 in 

particular following conscious prime processing, in which postlexical 

priming mechanisms can affect response preparation (Kiefer et al., 

2020).

Finally, the BDNF Val66Met polymorphisms was expected to 

influence drift rate ν and decision threshold a. In line with the hy-

pothesized superficial processing style of Met allele carriers (without 

indepth lexical analysis), we assumed Met allele carriers would show a 

general lower decision threshold a and a reduced drift rate ν. As drift-

diffusion model analyses conjointly consider RT and ER data, they 

might be more sensitive to reveal such differences in both masked and 

unmasked versions of the priming paradigm.

METHODS

Participants

Data from a recent study (Sanwald et al., 2020) was reanalyzed with 

drift-diffusion models. In total, 188 German participants were re-

cruited from the Ulm Gene Brain Behavior Project (UGBBP) data-

base. All participants gave written informed consent and participated 

voluntarily. Thirty-three participants were excluded due to the fol-

lowing reasons: Not fulfilling the inclusion criteria of no psychiatric 

disorder (n = 15), no successful genotyping (n = 4), extremely high/

low response time (n = 9), near chance performance in the masked 

priming paradigm (n = 1), and above chance performance in the 

prime identification task (n = 4). The data of the remaining 155 par-

ticipants was analyzed. Seventy eight percent of the participants in 

the included sample were female (n = 121). Mean age was 22.23 years 

(SD = 3.6). Participants were mainly students (74.2%); 25.2% had a 

college or technical college degrees and one participant (0.62%) had 

no school-leaving qualification. The local ethics committee at Ulm 

University approved this study.

Genotyping
Participants were genotyped regarding BDNF Val66Met polymor-

phism. Details of the genotyping process are reported in Sanwald et 

al. (2020). Due to a low number of participants homozygous for 66Met 

(N = 7; 4.5%), homozygous 66Met carriers and heterozygous Val/

Met carriers (N = 50; 32.3%) were combined into one group (Met+). 

The remaining 98 participants (63.2%) were homozygous for Val66. 

These frequencies are comparable to other studies investigating BDNF 

Val66Met in Caucasian populations (Montag, Basten, et al., 2010; 

Shimizu et al., 2004).

Procedure
Before the experiment started, participants completed a German ver-

sion of the Edinburgh Handedness Inventory (Oldfield, 1971), iden-

tifying their response hand. Participants performed a primed lexical 

decision task in a masked prime and an unmasked prime condition. 

During the lexical decision task, they were asked to decide whether 

a target word was a real word or a pseudoword. Pseudowords were 

not lexically meaningful but appeared like a German word (e.g., 

Gobel) and served as distractors. All primes were lexically meaningful 

German words. Participants were instructed to respond as quickly and 

as accurately as possible. Responses (word vs. pseudoword decision) 

were given by pressing one of two buttons on a response box by either 

the index finger (word response) or the middle finger (pseudoword 

response). Response buttons were laterally reversed depending on 

the handedness of the participants. The masked priming paradigm 

was conducted before the unmasked priming paradigm. Participants 

performed 24 training trials before each priming paradigm started. 

Presentation and programming of the experiments was carried out 

using the ERTS (Experimental Run Time System, Berifsoft, Frankfurt, 

Germany) software.

The masked priming paradigm used in this study was adapted from 

our previous work (Kiefer, 2002; Kiefer & Brendel, 2006; Montag et al., 

2009). Half of the targets were meaningful words (n = 80), the other 

half were pseudowords (n = 80). Fifty percent of the primes preced-

ing a meaningful target word were semantically related to the target (n 

= 40, e.g., hen–egg), the other half was non-related to the target (e.g., 

leaf–car). Nine random letters were used as mask. The sequence of a 

trial is shown in Figure 2, Panel A.

In the unmasked priming condition, primes were presented for 

200 ms (for the complete sequence of a trial, see Figure 2, Panel B). 

Concerning the primes preceding a meaningful target, one third (n = 

18) was directly related to the target, one third was indirectly related (n 

= 18, e.g., lemon–sweet), and the remaining third of the primes were 

nonrelated (n = 18). Meaningful targets made up 50% of the targets 

(n = 54), the other half of the targets were pseudowords (n = 54). This 

paradigm was also adapted from previous work (Kiefer et al., 2005).

To ensure that participants were not aware of the masked primes, 

a prime recognition task was conducted at the end of the study, that 

is, after the masked and unmasked priming paradigms. In the recog-

nition task, 80 trials taken from the masked priming paradigm were 

presented. Primes were words in half of the trials (n = 40) and mean-
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ingless letter strings (“KKKKKK”) in the other half of the trials (n = 

40). The task of the participants was to decide whether the prime was a 

real word or a meaningless letter string. To evaluate prime awareness, 

we calculated d’ measures (Green & Swets, 1966) for each participant. 

For this purpose, z-transformed relative frequencies of false alarms 

were subtracted from the z-transformed relative frequencies of hits 

per participant: d’ = z(hits) – z(false alarms). Four participants were 

excluded from the analysis due to above-chance performance (see the 

Participants section). The other participants performed within the 95% 

CI of chance performance, indicating unawareness of the primes. For 

further details of the prime recognition task and significance tests con-

sidering prime awareness, see Sanwald et al. (2020). 

Drift-Diffusion Models
The RT outliers were excluded if they exceeded +- 2 SDs of the individ-

ual mean response time of correct responses per participant separately 

for the masked and the unmasked condition. If an incorrect response 

exceeded this threshold, it was excluded as well. Additionally, pseu-

dowords were excluded from the analyses. All remaining responses to 

the word targets were included in the drift-diffusion model analyses.

Drift-diffusion models were estimated separately for the masked 

and unmasked condition due to unequal number of trials and the addi-

tional indirectly related prime condition in the unmasked priming par-

adigm. Correct and incorrect responses served as decision thresholds. 

The models were estimated using hierarchical drift diffusion model 

(HDDM), version 0.6.0 (Wiecki et al., 2013), a toolbox implemented 

for Python. The HDDM estimates hierarchical Bayesian parameters of 

the drift-diffusion model. The starting point z was fixed to a/2 as an a 

priori bias towards a correct or incorrect responses is not possible be-

cause correctness is determined only after the response (Voss, Nagler, 

et al., 2013). Intertrial variabilities were fixed to zero. To investigate 

which parameter combination fits the data best, we estimated each 

possible parameter combination separately and compared the DIC 

values (Spiegelhalter et al., 2002; Wiecki et al., 2013) of these models. 

The DIC (deviance information criterion) is a Bayesian information 

criterion. Lower values indicate better model fit. The DIC values (see 

Table 2) indicate a model with ν, a, and t0 varying for semantic related-

ness and BDNF Val66Met group fits the data best, for the masked as 

well as the unmasked condition. It may seem counterintuitive to vary 

the decision threshold a depending on semantic relatedness. The drift-

diffusion model typically assumes a to be set before the stimulus is 

shown and relatedness of prime and target should only play a role after 

the target is shown. Nevertheless, if the threshold was fixed for seman-

tic relatedness, the DIC increased (DICmasked = −21926.13; DICunmasked = 

−13878.10) compared to the model with all parameters freely varying 

for both conditions. Therefore, we report the results for the model with 

freely varying drift-diffusion model parameters ν, a, and t0, and ad-

dress the interpretation for thresholds varying for relatedness later in 

the discussion. To achieve stable parameter estimations, 10000 samples 

were drawn from which 3000 were discarded (parameter estimations 

usually stabilize after a number of samples large enough). All models 

converged. Evaluation of model convergence is described in detail in 

the Supplementary Material A. 

Statistical Analysis
Bayesian repeated-measures ANOVAs were used to analyze the drift-

diffusion model parameters. Statistical analyses were performed with 

JASP, version 0.9.2 (JASP Team, 2019), an open-source statistics pro-

gram. Bayesian ANOVAs were calculated for each parameter (ν, a, t0) 

separately for the masked and unmasked conditions by entering the 

respective subject parameter estimates of the drift-diffusion model 

into the ANOVA. Genotype was entered as a between-subjects factor 

(Val/Val and Met+) and semantic relatedness as a within-subject fac-

tor (related and unrelated), leading to a 2 × 2 design for the masked 

FIGURE 2.

Masked and unmasked priming paradigms. Panel A: Masked priming paradigm. Each trial started with a fixation 
cross for 750 ms, followed by a forward mask for 100 ms. Afterwards, the prime was presented for 33.5 ms, fol-
lowed by a backward mask with the same duration. Finally, the target word was presented until the lexical deci-
sion was made. Panel B: Unmasked priming paradigm. A fixation cross was presented for 700 ms, followed by the 
prime for 200 ms. Finally, the target word was presented until the response was given.
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TABLE 2.  
DIC scores for the Different Parameter Combinations Sepa-
rately for the Masked and Unmasked Priming Paradigm

Parameter DIC (masked) DIC (unmasked)
ν, a, t0 −21991.22 −14445.30

ν, a −21803.96 −14120.82

ν, t0 −21920.13 −14389.90
a, t0 −21950.26 −14338.35

ν −21852.16 −14139.78
a −21761.88 −14056.17
t0 −21922.48 −14353.52

condition and a 2 × 3 design for the unmasked condition (due to the 

additional relatedness condition of indirectly related). In an additional 

step, we omitted the indirectly related condition of the unmasked 

condition and combined the masked and unmasked conditions into 

one repeated measure Bayesian ANOVA, leading to a 2 × 2 × 2 design 

(genotype × semantic relatedness × masking condition). Due to the 

different trial numbers between the masked and unmasked condition, 

this analysis should be treated as an additional exploratory analysis 

with the purpose of an easier comparison of both masking conditions. 

To evaluate the strength of the effects, we calculated Cohen’s d for the 

main effects for each drift-diffusion model parameter (for the effect 

of semantic relatedness averaged across genotype groups and for the 

effect of genotype averaged across relatedness conditions).

The JASP Bayesian ANOVAs test the experimental factors sequen-

tially by including them step-wise in respective models which are 

tested against a null model to determine evidence for the inclusion 

of (a) factor(s) and, therefore, evidence for an effect of the factor(s). 

This evidence is quantified by a Bayes factor (BF, Rouder et al., 2012), 

which compares the probability of one model against an alternative 

model. For example, a BF of 5 indicates that the data is five times more 

likely given the actual model (e.g., including the investigated factor) 

compared to an alternative model (e.g., a null model excluding the 

investigated factor, Rouder et al., 2012). To simplify the comparison 

of BFs, we report BFs for the effects, that is, for the main effects and 

the interactions. These BFs compare a model including a specific effect 

against equivalent models stripped of the effect (Wagenmakers et al., 

2018), and can therefore be interpreted as evidence for that effect. To 

evaluate the evidence for an effect, we used the values recommended 

by the JASP team (Wagenmakers et al., 2018): a BF from 10–30 indi-

cates strong evidence, a BF from 30–100 indicates very strong evidence 

and a BF larger than 100 indicates extremely strong evidence for the 

particular effect. The ANOVA approach was chosen to facilitate the 

interpretation of the experimental factor effects. 

An alternative approach to analyze experimental conditions is to 

directly compare the posterior group nodes of the relevant parameters. 

Direct comparisons were calculated between all conditions per drift-

diffusion model parameter and paradigm (masked and unmasked). 

The probabilities of these differences are directly calculated using 

the posterior distributions of the respective group parameters (one 

group parameter per condition). Therefore, the p value indicates the 

(Bayesian) probability that one parameter is larger (or smaller) than the 

other (given the data, Wiecki et al., 2013). These comparisons as well 

as further details of these analyses are provided in the Supplementary 

Material B. To give a brief overview, these analyses showed a similar re-

sult pattern as the Bayesian ANOVA analysis reported below: Despite 

the related condition in unmasked priming, drift rates and decision 

thresholds were larger for Val/Val homozygotes than Met+ carriers in 

all comparisons. Drift rates and decision thresholds were also consist-

ently larger for the related condition(s). Probabilities for a difference 

between nondecision times in the different relatedness conditions were 

larger in the unmasked paradigm.

RESULTS

Descriptive Statistics of Response 
Times and Error Rates

Significant effects of semantic relatedness and BDNF Val66Met group 

(separately for masking conditions) on RTs and ERs were already re-

ported in Sanwald et al. (2020) and are therefore omitted in this article. 

However, to facilitate the comparison of RTs, ERs, and drift-diffusion 

model parameters, mean RTs and ERs of the masked and unmasked 

priming paradigm are shown at a descriptive level (see Table 3). There 

Note. The left column indicates which parameter(s) is / are estimated 

freely (varying for relatedness and BDNF Val66Met) in the respective 

model. The DIC score for the best fitting model is depicted in bold.

FIGURE 3.

Descriptive statistics. Mean ERs and mean RTs (in seconds) for 
the masked and unmasked priming paradigms. Note that there 
was no indirectly related condition in the masked priming 
paradigm. Val/Val homozygotes showed consistently slower 
response times and lower error rates. Error bars show the SEM.
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were consistent priming effects over all conditions for both RTs and 

ERs, showing faster RTs and fewer errors in the related compared to 

the unrelated conditions.

Response times were consistently slower for Val/Val homozygotes 

compared to Met+ carriers. In contrast, Met+ carriers made more er-

rors across all conditions. The difference between the groups was espe-

cially pronounced in the nonrelated condition in the masked priming 

paradigm (Met+ carriers made considerably more errors and were 

considerably faster). The descriptive results are visualized in Figure 3.

Masked Priming Paradigm
Bayesian ANOVAs of the drift-diffusion model parameter values of 

the masked priming paradigm (see Table 4) revealed several effects. 

Considering the drift rate ν, there was extreme evidence for an effect of 

semantic relatedness, BF = 4.5*e41, Cohen’s d(related – nonrelated) = 1.51, and 

genotype, BF = 312.3, Cohen’s d(Val/Val – Met+) = 0.60. There was no evi-

dence for an interaction of both factors, BF = 0.2. These effects manifest 

in higher drift rates in the related condition as well as higher drift rates 

for Val/Val homozygotes compared to subjects in the Met+ group. The 

analysis of the decision thresholds a revealed a main effect of semantic 

relatedness, BF = 1.2*e5, Cohen’s d(related – non-related) = 0.53, and genotype, 

BF = 1158.6, Cohen’s d(Val/Val – Met+) = 0.64, reflecting a larger threshold in 

the related condition and a larger threshold for Val/Val homozygotes. 

Additionally, there was strong evidence for an interaction of both fac-

tors, BF = 15.8, indicating a stronger difference between both genetic 

groups in the nonrelated condition, (difference(Val/Val – Met+ | related) = 0.070; 

difference(Val/Val – Met+ | non-related) = 0.172). In the nonrelated condition, 

Met+ carriers showed a substantially lower threshold a. In the related 

condition, the threshold of Met+ carriers was lower as well, but the 

difference between the genetic groups was smaller. For the nondecision 

time t0, there was only a main effect of semantic relatedness, BF = 61.5, 

Cohen’s d(related – non-related) = −0.22, but no noticeable evidence for an effect 

of genotype, BF = 0.3, Cohen’s d(Val/Val – Met+) = −0.03, or an interaction 

of both factors, BF = 1.1. The effect of semantic relatedness showed 

up in a slightly smaller nondecision time t0 in the related condition 

compared to the unrelated condition (difference(related – nonrelated | Val/Val) = 

−0.004; difference(related – nonrelated | Met+) = −0.012).

Unmasked Priming Paradigm
Parameter values of the drift-diffusion model analysis for the un-

masked priming paradigm are shown in Table 5. There was extreme 

evidence for an effect of semantic relatedness on the drift rate ν, BF 

= 9.5*e109, Cohen’s d(related – nonrelated) = 3.12. The drift rates increased as 

semantic relatedness became stronger (nonrelated to indirectly related 

to related). Evidence for a main effect of genotype was small, BF = 4.6, 

Cohen’s d(Val/Val – Met+) = 0.35, but there was evidence for an interaction 

of semantic relatedness and genotype, BF = 11.7. The interaction in-

dicates that drift rate was comparable for both genotype groups in the 

related condition (difference(Val/Val – Met+ | related) = 0.008), but was smaller 

for the Met+ than for the Val/Val group in the indirectly (difference(Val/

Val – Met+ | indirectly related) = 0.287) and the nonrelated condition (difference(Val/

Val – Met+ | non-related) = 0.184). Regarding the decision threshold a, there was 

extreme evidence for an effect of semantic relatedness, BF = 1.3*e64, 

Cohen’s d(related – non-related) = 1.89, reflecting higher thresholds for se-

mantically related (and indirectly semantically related) trials. The BF 

for genotype revealed very strong evidence for an effect, BF = 135.5, 

Cohen’s d(Val/Val – Met+) = 0.53, with elevated thresholds for the Val/Val 

genotype group. Furthermore, there was also extreme evidence for 

an interaction of semantic relatedness and genotype, BF = 2.6*e5. 

The interaction arose as consequence of the absence of a difference 

between the genetic groups in the related condition (difference(Val/Val – 

Met+ | related) = -0.001), while the decision threshold was smaller for the 

Met+ group in the indirectly related (difference(Val/Val – Met+ | indirectly related) 

= 0.145) and the nonrelated condition (difference(Val/Val – Met+ | non-related) = 

0.097). Finally, there was extreme evidence for a semantic relatedness 

effect on the nondecision time t0, BF = 2.3*e30, Cohen’s d(related – nonrelated) = 

TABLE 3.  
Mean Response Times (in Seconds) and Error Rates of the 
Masked and Unmasked Priming Paradigm

Masking
condition Relatedness Genotype M SD

Response 
times

Masked
Related

Val/Val 0.56606 0.0533
Met+ 0.56262 0.0597

Nonrelated
Val/Val 0.58908 0.0587
Met+ 0.57638 0.0592

Unmasked

Related
Val/Val 0.53913 0.0680
Met+ 0.53102 0.0650

Indirectly 
related

Val/Val 0.57422 0.0664
Met+ 0.56731 0.0680

Nonrelated
Val/Val 0.58631 0.0717
Met+ 0.58413 0.0797

Error
rates

Masked
Related

Val/Val 0.0157 0.021
Met+ 0.0204 0.038

Nonrelated
Val/Val 0.0247 0.031
Met+ 0.0420 0.036

Unmasked

Related
Val/Val 0.0080 0.020
Met+ 0.0109 0.034

Indirectly 
related

Val/Val 0.0184 0.031
Met+ 0.0344 0.059

Nonrelated
Val/Val 0.0493 0.056
Met+ 0.0607 0.063

TABLE 4.  
Mean Drift-Diffusion Model Parameters of the Masked Prim-
ing Paradigm

Parameter Relatedness Genotype M SD

v
Related

Val/Val 4.003 0.381
Met+ 3.795 0.413

Nonrelated
Val/Val 3.444 0.369
Met+ 3.194 0.371

a
Related

Val/Val 1.447 0.181
Met+ 1.377 0.204

Nonrelated
Val/Val 1.397 0.192
Met+ 1.225 0.178

t0
Related

Val/Val 0.389 0.034
Met+ 0.386 0.038

Nonrelated
Val/Val 0.393 0.032
Met+ 0.398 0.039
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tion, BF = 0.2, there was comparably little evidence for an effect. To 

summarize these findings, the decision thresholds were shown to be 

elevated for related primes and the difference between related and non-

related condition was larger in the unmasked priming paradigm, d(a)

unmasked / d(a)masked = 3.53. In addition, the overall smaller thresholds for 

the Met+ carriers were less pronounced in the related conditions (see 

Figure 4). The difference between genotype groups was slightly larger 

in masked than in unmasked priming, d(a)unmasked / d(a)masked = 0.82. For 

the remaining drift-diffusion model parameter, the nondecision time 

t0, the analysis showed extreme evidence for an effect of semantic re-

latedness, BF = 7.8*e20, and an interaction of semantic relatedness and 

masking condition, BF = 1.1*e10. Furthermore, there was also extreme 

evidence for a main effect of masking condition, BF = 626.4. The Bayes 

Factors of all remaining effects indicated no evidence, all BFs < 0.8. As 

can be seen in Figure 4, the effects on t0 emerged as a consequence of a 

strong semantic relatedness effect in the unmasked priming paradigm. 

Particularly in the unmasked priming paradigm, t0 was considerably 

shortened in trials with related primes, that is, the semantic relatedness 

effect was nearly four times larger in the unmasked than in the masked 

priming paradigm, d(t0)unmasked / d(t0)masked = 3.72.

DISCUSSION

The present study aimed at elucidating mechanisms underlying the dif-

ferential RT and ER priming effects as a function of the BDNF Val66Met 

-0.83, reflecting an increase in t0 with decreasing semantic relatedness 

(t0[related] < t0[indirectly related] < t0[non related]). Regarding the 

main effect of genotype, BF = 0.3, Cohen’s d(Val/Val – Met+) = 0.05, and the 

interaction, BF = 0.1, there was no evidence for an effect on t0.

Conjoint Analysis of the Masked 
and Unmasked Priming Paradigms
To facilitate the comparison of the masked and unmasked priming 

paradigms, we combined the drift-diffusion model parameters of 

the masked and unmasked conditions into a conjoint analysis (by 

excluding the indirectly related condition of the unmasked priming 

paradigm).

This Bayesian ANOVA revealed extreme evidence for a main effect 

of semantic relatedness, BF = 5.6*e114 and the interaction of semantic 

relatedness and masking condition, BF = 4.1*e40, for the drift rate ν. 

There was also evidence for an effect of genotype, BF = 12.6, and mask-

ing condition, BF = 20.4, but no convincing evidence for the remaining 

interactions, all BFs < 2.6. Taken together, these results strongly indi-

cate that the drift rate was higher in the related condition and that this 

difference was particularly pronounced in the unmasked priming par-

adigm (see Figure 4). That is, the relatedness effect was twice as large in 

the unmasked than in the masked priming paradigm, d(ν)unmasked / d(ν)

masked = 2.07. Considering the genotype effect, Val/Val carriers showed 

overall larger drift rates compared to Met+ carriers. The results for 

the decision threshold a indicated extreme evidence for an effect of 

semantic relatedness, BF = 3.6*e45, for the interaction of semantic re-

latedness and masking condition, BF = 3.1*e17, and for the interaction 

of semantic relatedness and genotype, BF = 6452.0. Additionally, there 

was evidence for a main effect of genotype, BF = 99.6, and for the inter-

action of genotype and masking condition, BF = 45.0. Considering the 

main effect of masking condition, BF = 6.0, and the three-way interac-

TABLE 5.  
Mean Drift-Diffusion Model Parameters of the Unmasked 
Priming Paradigm

Parameter Relatedness Genotype M SD

v

Related
Val/Val 4.427 0.480
Met+ 4.419 0.493

Indirectly 
related

Val/Val 3.808 0.416
Met+ 3.521 0.536

Nonrelated
Val/Val 3.131 0.425
Met+ 2.947 0.362

a

Related
Val/Val 1.485 0.145
Met+ 1.486 0.148

Indirectly 
related

Val/Val 1.442 0.149
Met+ 1.297 0.140

Nonrelated
Val/Val 1.239 0.159
Met+ 1.142 0.172

t0

Related
Val/Val 0.368 0.038
Met+ 0.361 0.041

Indirectly 
related

Val/Val 0.385 0.040
Met+ 0.384 0.052

Nonrelated
Val/Val 0.400 0.046
Met+ 0.401 0.048

FIGURE 4.

Mean drift-diffusion model parameter for the masked and un-
masked priming paradigm. The first row shows the decision 
thresholds a, the second the drift rates ν and the third one the 
nondecision times t0. The relatedness conditions are depicted 
on the x axis. Note that there was no indirectly related condi-
tion in the masked priming paradigm. Drift rates ν and deci-
sion thresholds a were elevated in the related conditions. In the 
unmasked paradigm, nondecision time t0 was smaller in the 
related conditions. Met+-carrier showed lowered parameters ν 
and a. Error bars show the SEM.
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polymorphism in our recent study (Sanwald et al., 2020): RT and ER 

masked priming effects were reversed in the different genotype groups, 

while significant effects were absent in the unmasked priming paradigm. 

Drift-diffusion models served as framework to analyze (cognitive) 

mechanisms underlying this complex priming pattern. The present anal-

ysis with drift-diffusion models indicated priming effects independently 

of the genotype on all model parameters in both masked and unmasked 

priming: Drift rate ν and the decision threshold a were higher in the 

related than in the unrelated condition. The nondecisional parameter 

t0 was smaller in the related condition, particularly in unmasked prim-

ing, whereas in the masked condition, effect sizes of priming on t0 were 

small. The BDNF Val66Met polymorphism influenced priming effects 

with regard to the decision threshold a and the drift rate ν in the masked 

priming paradigm. Most notably, although significant genotype effects 

were absent in the conventional RT and ER analyses, analyses with 

drift-diffusion models also revealed influences of the BDNF Val66Met 

polymorphism on a and ν in the unmasked priming paradigm, albeit 

with smaller effect sizes than in masked priming. Before we return to 

individual differences in priming as a function of genotype, we discuss 

general priming effects on model parameters in more detail.

Influence of Semantic Relatedness 
in Masked and Unmasked Priming 
Conditions
The presently observed priming effect on drift rate ν (elevated ν in the 

related condition) is in line with studies by Lerche and Voss (2017) and 

Voss, Rothermund et al. (2013), who identified the drift rate ν as a critical 

parameter in semantic priming. Modulation of ν by priming is assumed 

to reflect semantic preactivation of the semantic target representation 

by the prime (Voss, Rothermund, et al., 2013; Wentura et al., 2020). In 

contrast to present effects of priming on drift rate ν in both masked and 

unmasked priming, in the earlier study by Gomez et al. (2013), priming 

effects on drift rate were absent for masked primes. They reported a con-

sistent influence of semantic relatedness across masked and unmasked 

priming only on t0. To be more precise, Gomez et al. reported a prim-

ing effect on ν solely in the unmasked priming paradigm, while t0 was 

influenced in both masked and unmasked paradigms. However, there 

are several differences between the present study and Gomez et al. In 

Gomez  et al, masked RT priming effects were not statistically reliable. 

Furthermore, due to the longer prime duration, the presence of only a 

forward mask, and a missing prime awareness assessment, it remains 

open whether participants were aware of the masked primes in Gomez 

et al. Awareness of primes at short SOAs may be distracting for the tar-

get processing, conceivably interfering with priming effects (Bodner & 

Masson, 2003; Durante & Hirshman, 1994; Fischler & Goodman, 1978). 

In the present study, where participants with above-chance performance 

in the prime identification task were excluded, performance in the prime 

awareness test did not correlate with any priming effects (related–nonre-

lated condition) on the drift-diffusion model parameters in the masked 

priming paradigm (all |r| < 0.08, all ps > 0.33). These results support 

the assumption that potential residual prime awareness did not affect 

masked priming effects. Otherwise, increasing prime awareness should 

be associated with increased masked priming effects. Nevertheless, 

similar to Gomez et al. (2013), we observed a small priming effect on 

t0 in masked priming, presumably representing a shortened encoding 

process in related primes (Gomez et al., 2013; Voss, Nagler et al., 2013). 

However, the magnitude of this effect is considerably smaller than the 

effect on the drift rate (masked priming paradigm: d(t0) = −0.22, d(ν) 

= 1.51), therefore indicating the drift rate to be the critical parameter in 

masked semantic priming.

Both drift rate and t0 priming effects were more pronounced in un-

masked priming, in line with larger priming effects in unmasked prim-

ing compared to masked priming in the literature (Kiefer, 2002; Kiefer & 

Spitzer, 2000). The difference between masked and unmasked priming 

effects was especially strong for t0. The priming effect on t0 showed the 

largest increase in unmasked priming compared to masked priming, 

showing a 3.7 times larger effect. In comparison, the priming effect on 

the drift rate was about twice as large in unmasked compared to masked 

priming. This is clearly a consequence of the small priming effect on t0 

in masked priming, while the drift rate showed a strong modulation in 

the masked condition. The transition of a small effect size in masked 

t0 priming to a large effect size in unmasked t0 priming, although 

all effect sizes were generally smaller compared to the drift rate, is of 

particular interest when considered in view of the literature. Priming 

effects on t0 were found in unmasked priming (Voss, Rothermund, et 

al., 2013) and in masked priming only at long prime durations (Kiefer 

et al., 2020), that is, presumably following conscious prime processing. 

In line with this research, an additional mechanism contributing to the 

enhanced t0 priming effects in unmasked priming could be considered. 

One possible mechanism is a fostered affirmative response in related 

prime-target pairs, which accelerates responding (Klauer & Musch, 

2002; Voss, Rothermund, et al., 2013; Wentura, 2000). In contrast, 

if prime and target are nonrelated, subjects might take longer for the 

target response, as prime and target are incongruent. A second possible 

mechanism could be a postlexical backward matching strategy (Kiefer et 

al., 2020; Neely et al., 1989). If prime and target are related, the target has 

to be a semantically meaningful word, facilitating the target response, 

which is therefore executed faster. As these mechanisms are thought to 

depend on conscious processing, this might explain why t0 modulations 

were mainly observed in unmasked priming. An encoding facilitation 

process (Gomez et al., 2013) seems to play a role in the t0 modulation as 

well (as the observed small priming effect on t0 in the masked paradigm 

suggests), but might be less informative in separating conscious and 

unconscious processing.

Furthermore, the results of the unmasked priming task showed 

a gradual change of drift rates and nondecision times according to 

semantic relatedness. The magnitude of the drift rate ν increased from 

nonrelated over indirectly related to directly related prime-target pairs, 

while t0 was shortened with increasing semantic relatedness, suggesting 

a similar influence of associative strength on both processes.

The decision threshold a was elevated in the related condition in 

masked and unmasked priming compared to the unrelated condition. 

This effect was unexpected and not hypothesized. How conservatively 

subjects respond to targets should not be affected by semantic related-
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ness, but rather remain constant within an experiment. However, model 

comparisons using the DIC criterion indicated that model fit was better 

if the decision threshold a was allowed to vary with regard to semantic 

relatedness, compared to a model, in which decision threshold was held 

constant for relatedness. On the behavioral performance level, par-

ticipants made more errors if prime and target were nonrelated. On the 

model level, decision thresholds were lowered in nonrelated conditions, 

indicating participants to respond less carefully in these conditions. In 

contrast, in the related condition, subjects responded faster and less er-

ror prone, reflected by elevated drift rates and elevated decision thresh-

olds. As subjects showed consistent RT priming, that is, faster responses 

in related conditions, the drift rate elevation had to be large enough to 

compensate for the increased decision thresholds and, therefore, the 

more conservative response criterion. Such a dissociation between drift 

rate and decision threshold could be indicative for occasionally observed 

dissociations between RT and ER priming in the priming literature. 

Lack of RT or ER priming could be a consequence of different response 

strategies. According to the framework of speed-accuracy tradeoffs 

(Heitz, 2014), a response strategy focused on speed should foster ER 

priming (by diminishing RT differences), while a strategy focused on ac-

curacy and, therefore, low ERs should boost RT priming. In view of the 

observed results, that is, lowered decision thresholds in the nonrelated 

condition, we would assume a premature abortion of evidence accumu-

lation in this condition. The task instruction (Ratcliff & McKoon, 2008; 

Voss et al., 2004), that is, to respond as fast and as accurate as possible, 

may have promoted a response in the nonrelated condition despite an 

unfinished information accumulation process. As drift rates were lower 

in the nonrelated condition and, therefore, information accumulated 

more slowly, subjects may implicitly have recognized their reduced re-

sponse speed. As a consequence, they possibly initiated their response 

earlier in the information accumulation process to achieve comparable 

response speeds across the whole task (leading to lowered decision 

thresholds in the nonrelated condition), in order to be compliant with 

the instruction stressing both speed and accuracy. Possibly, participants 

adopt decision thresholds dynamically during the course of one trial, 

in order to meet an internal response speed criterion. At least trial-

wise, changes with regard to caution in responding have been already 

observed in other domains such as conflict (Kerns et al., 2004) or error 

processing (Dutilh et al., 2012). A dynamic adaptation of the decision 

threshold thus might extend semantic priming. Of course, as an influ-

ence of semantic relatedness on the decision threshold was unexpected, 

this interpretation is clearly post-hoc and deserves further investigation. 

Nevertheless, the assumed influence through a speed-accuracy tradeoff 

additionally provides an explanation why the priming effect on a is more 

pronounced in the unmasked priming paradigm. Given the larger prim-

ing effect on ν in unmasked priming and, therefore, a larger difference 

in the information accumulation speed between related and nonrelated 

conditions, subjects had to abort the information accumulation process 

in the nonrelated condition of unmasked priming even earlier to achieve 

comparable response speeds across relatedness conditions. This influ-

ence was observable across all semantic distances, comparable to the 

results for the drift rates in unmasked priming.

Interindividual Differences in 
Priming as a Function of the BDNF 
Val66Met Polymorphism

The BDNF Val66Met polymorphism influenced the drift rate ν and 

the decision threshold a in both priming paradigms. The Met+ group 

showed a lower drift rate as well as lowered thresholds compared to the 

Val/Val group. The difference of decision thresholds between genetic 

groups was particularly pronounced in the nonrelated condition in the 

masked paradigm with Met+-carriers showing an especially low deci-

sion threshold. Hence, drift-diffusion model analyses revealed separable 

effects of the BDNF Val66Met polymorphism on the mechanisms un-

derlying priming. To recapitulate, Met+ carriers showed decreased RT 

priming, but increased ER priming due to an especially high ER in the 

nonrelated condition. In line with the descriptive result pattern of faster 

RTs and elevated ERs in the Met+-group (in masked and unmasked 

priming), we hypothesized Met+ carriers to use a superficial processing 

style in the lexical decision task, bypassing indepth lexical processing 

(Sanwald et al., 2020). The lowered drift rates in Met+ carriers indi-

cate a slower information accumulation in the Met+ group (Ratcliff 

& McKoon, 2008; Voss, Nagler, et al., 2013), presumably representing 

less attention to concept meaning due to their superficial processing 

style. Nevertheless, BDNF Val66Met did not modulate the priming ef-

fect on the drift rate; the observed genotype effect on drift rates was a 

main effect comparable across relatedness conditions. According to the 

decreased drift rates in Met+ carriers, the faster RTs must arise as con-

sequence of the lowered decision thresholds in the Met+ group because 

the lowered drift rates would result in slower responses. This effect was 

more than compensated for by the decreased thresholds. Following this 

interpretation, Met+-carriers rapidly responded to the targets without 

paying particular attention to accuracy. Speed versus accuracy tradeoffs 

(Heitz, 2014) were already shown to influence the decision thresholds 

(Ratcliff & McKoon, 2008; Voss et al., 2004). As a consequence, Met+-

carriers could achieve even faster RTs than the Val/Val homozygotes in 

exchange for higher ERs. From a motivational point of view, Met+ car-

riers might have realized their comparable low evidence accumulation 

(indicated by lower drift rates), leading to frustration. Frustration was 

shown to be related to reduced decision thresholds, possibly to finish 

the frustrating task earlier (Lerche et al., 2018). It is possible that (in ac-

cordance to the lower drift rates) the task was generally more demand-

ing for Met+-carriers, therefore increasing frustration throughout the 

experiment. To sum up, according to their hypothesized superficial pro-

cessing style, Met+ carriers accumulated lexical information including 

concept meaning more slowly, indicated by decreased drift rates (Voss, 

Rothermund, et al., 2013; Wentura et al., 2020; for preactivation effects 

on ν in other domains also see Klauer et al., 2007). Additionally, Met+ 

carriers formed a decision based on insufficient evidence, possibly due 

to frustration, indicated by lowered decision thresholds compared with 

Val/Val homozygotes, resulting in faster RTs and higher ERs. 

A comparison of the differences of the BDNF Val66Met groups 

between the two masking conditions showed smaller differences in the 

unmasked priming paradigm, which were in fact absent in the related 

condition of the unmasked paradigm. This could be due to a ceiling 
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effect. In the related condition of the unmasked paradigm, the overall 

fastest RTs and lowest ERs were observed. Therefore, performance could 

have been at maximum in this condition, so that a possible difference 

between the groups could not be observed. Nevertheless, unlike in the 

conventional analysis (Sanwald et al., 2020), we observed a difference 

in drift rates and decision thresholds between BDNF Val66Met groups 

in the unmasked paradigm (except of the related condition), suggesting 

an improved sensitivity of drift-diffusion models to detect differences 

in (cognitive) processes, presumably due to the conjoint analysis of RTs 

and ERs.

Our drift diffusion model analyses indicated that Met+ carriers 

accumulated semantic information more slowly (decreased drift rate) 

and responded based on less accumulated evidence (lowered decision 

threshold, particularly in the nonrelated condition). Nevertheless, it is 

unclear how these findings relate to differences in executive functions, 

which are known to influence the magnitude of priming (Kiefer et al., 

2005; Moritz et al., 1999). Given the fact that we observed no difference 

in executive functions between the BDNF Val66Met groups (Sanwald et 

al., 2020) as measured with a digit span backward task, a contribution of 

this cognitive function to the presently observed priming differences is 

not very likely. To complement this, we calculated correlations between 

performance in the digit span backward task and the estimated drift-

diffusion model parameters. This analysis revealed no significant corre-

lations (all rs ≤ 0.07, all ps > 0.38). Furthermore, evidence with regard to 

the influence of the BDNF Val66Met polymorphism on executive func-

tions is heterogeneous. As indicated by a meta-analysis (Mandelman & 

Grigorenko, 2012), some studies revealed elevated executive functions 

in Met+ carriers, while other studies reported decreased executive 

functions in this group. As a result, the reported meta-analytically deter-

mined effect was not distinguishable from zero. As we did not measure 

other cognitive abilities besides executive functions, it remains unclear 

which more general cognitive factors could explain the observed dif-

ferences between BDNF Val66Met groups in semantic priming in the 

present study.

Limitations
There are several limitations which have to be considered. First of all, 

the masked and unmasked priming paradigms differed. The unmasked 

priming paradigm included fewer trials, a longer SOA and an additional 

relatedness condition with indirectly related primes. Furthermore, the 

presentation order of both paradigms was not balanced; participants 

always performed the masked paradigm first. The direct comparison of 

masked and unmasked priming paradigm is therefore exploratory and 

should be interpreted with caution. Investigating the influence of the Met 

allele was complicated, as our sample was too small to model the Met/

Met-homozygotes separately. The prevalence of Met/Met-homozygotes 

is about less than 5% in the Caucasian population (Montag, Basten, et 

al., 2010; Shimizu et al., 2004) and might therefore require even larger 

samples (Montag & Reuter, 2014). In general, complex psychological 

phenotypes and cognitive processes involved in priming and related 

constructs are influenced by hundreds or thousands of genetic variants, 

all with tiny effect sizes (Montag et al., 2020). Therefore, tremendous 

challenges still lie ahead to understand the complex molecular under-

pinning of priming. Finally, we observed overall low ERs in the priming 

paradigms. Low ERs may not be optimal for estimating drift-diffusion 

models (Ratcliff & McKoon, 2008; Voss, Nagler, et al., 2013).

Conclusions
To summarize, the drift-diffusion model analysis provided further 

insight into mechanisms underlying masked and unmasked priming. 

Furthermore, it shed light on the mechanisms leading to the interindi-

vidual variation of priming effects as a function of the BDNF Val66Met 

polymorphism. General priming effects were mainly reflected by the 

drift rates ν, supposedly representing semantic preactivation. Further 

priming processes could be mapped to the nondecision time t0, and were 

especially pronounced in unmasked priming, suggesting additional con-

scious processes to be involved in the t0 modulation, possibly semantic 

matching. Decreased decision thresholds a in the nonrelated conditions 

may reflect a compensation for the lowered drift rates, in terms of a 

speed-accuracy trade-off to accomplish a comparable response time 

level within the whole experiment. The hypothesized superficial pro-

cessing style of BDNF Val66Met Met+ carriers could be supported by 

the drift-diffusion analysis, following a similar speed-accuracy trade-off 

interpretation. We observed a lowered drift rate ν and a lowered deci-

sion threshold a in the Met+-group. Although Met+ carriers showed de-

creased drift rates, they could achieve faster RTs by paying less attention 

to accuracy (decreased decision thresholds). Despite these differences in 

processing styles, semantic preactivation by a related prime, indexed by 

the semantic relatedness effect on drift rate ν, was comparable in both 

genotype groups. Hence, this core mechanism of semantic priming does 

not seem to be altered in Met+ carriers. Overall, the present study adds 

further insight to the scarce literature considering the influence of se-

mantic priming on drift-diffusion model parameters. Most importantly, 

we demonstrated that differences in cognitive tasks between genetic 

groups can be elucidated in more detail using drift-diffusion modeling.
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SUPPLEMENTARY MATERIAL

A: Evaluation of Drift-Diffusion 
Model Convergence

The HDDM toolbox (Wiecki et al., 2013) provides several methods to as-

sess model convergence. Assessing Markov chain Monte Carlo (MCMC) 

chain convergence is crucial to “ensure that we are sampling from the 

actual posterior distribution”1. For this study, model convergence was 

inspected by: (a) evaluating the Monte Carlo (MC) error statistic, (b) 

visually inspecting the MCMC chains, and (c) calculating the Gelman-

Rubin statistic. Model convergence was assessed separately for the drift-

diffusion models of the masked and unmasked priming paradigm.

EVALUATION OF THE MONTE CARLO ERROR STATISTIC
For every estimated parameter, a Monte Carlo (MC) error statistic 

is provided. The MC error indicates the amount of uncertainty of the 

sampling process (Cowles, 2013). Cowles (2013) suggests the criterion of 

an MC error not larger than 5% of the posterior SD, MC error ≤ 0.05 × 

posterior SD. For the masked priming paradigm, every MC error statistic 

fulfilled this criterion. Considering the unmasked priming paradigm, 

99.7% of the MC error statistics fulfilled this criterion.

VISUAL INSPECTION OF THE CHAINS
The HDDM provides for every estimated (group) parameter the 

posterior trace, the autocorrelation, and the posterior histogram (for 

details see Wiecki et al., 2013). Appropriate convergence should be char-

acterized by the absence of drifts or large jumps in the trace, an early 

drop of the autocorrelation to about zero and the histogram should look 

“smooth” (like a normal distribution for group mean parameters and a 

gamma distribution for group variability parameters, Wiecki et al., 2013). 

To provide an overview of the traces, autocorrelations and posterior his-

tograms, the (subjectively evaluated) best and worst converged examples 

are presented. The best example (see Figure A1) shows a smooth trace, 

no autocorrelation, and a normal-distributed histogram. In contrast, the 

worst example (see Figure A2) shows some jumps in the trace (but they 

are considerably small) and a relatively late drop of the autocorrelation 

to near zero. Nevertheless, the histogram appears appropriate. To sum-

marize, even the worst example seems to have converged2, even if the 

plots look clearly less unproblematic than the best example.

GELMAN-RUBIN STATISTIC
The Gelman-Rubin statistic compares the within-chain with the be-

tween-chain variance for different iterations of the same model (Gelman 

& Rubin, 1992). Therefore, values close to 1 indicate that between-chain 

and within-chain variance are (nearly) equal, that is, the sampling pro-

cess did not differ between iterations. This indicates that the MCMC 

chains have converged. Considering the Gelman-Rubin statistic, Wiecki 

et al. (2013) suggest a deviation of less than 0.02 from 1, that is, 1.02 > 

Gelman-Rubin statistic > 0.98, as indicator for appropriate convergence. 

Considering the masked as well as the unmasked priming paradigm, 

every Gelman-Rubin statistic fulfilled this criterion. A summary of the 

Gelman-Rubin statistics is provided in Table A1.

SUMMARY
Summarizing the three different evaluation methods of model con-

vergence, model convergence can be evaluated as satisfying. None of the 

different methods indicated crucial convergence problems. The visual 

inspection indicated differences in the quality of model convergence. 

Nevertheless, all model seemed to have converged as indicated by the 

MC error and Gelman-Rubin statistics.

B: Comparison of the Posterior 
Distributions of Drift-Diffusion 
Model Parameters
We compared the posterior distributions of the drift-diffusion model 

group parameters to assess which experimental conditions differed. In 

the Bayesian approach used, there is no need to calculate additional sig-

nificance tests to compare conditions, as the whole distribution of a pa-

rameter estimation (posterior distribution) is available for use. Therefore, 

different conditions can be directly tested against each other using their 

posterior distributions (Wiecki et al., 2013). 

We performed posterior comparisons for all conditions3 of the drift-

diffusion models of the masked and unmasked priming paradigm. Those 

comparisons and respective probabilities (p[parameter A > parameter B] 

or p[parameter A < parameter B]) are presented in the following sections. 

The following abbreviations are used: 

-cond_A / cond_B: The conditions which are tested against each 

other. The first letter indicates the drift-diffusion model parameter. v = 

drift rate v, a = decision threshold a, t = nondecision time t0. The con-

dition is specified in parentheses. A = related condition (associated), I 

= indirectly related condition, N = nonrelated condition. met = Met+ 

genotype group, val = Val/Val genotype group.

-m_A / m_B: Mean of the respective parameter in Condition A and 

Condition B.

-sd_A / sd_B: SD of the respective parameter in Condition A and 

Condition B.

-p(A<B) / p(A>B): Posterior probability of the parameter in 

Condition A being greater / smaller than the parameter in Condition B. 

As p(A<B) = 1 – p(A>B) (and vice versa), only one of both probabilities 

is given.

The data is presented in Tables A2-A3.
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FIGURE A1.

Visual indicators of model convergence for the best converged example. The parameter shown is t0 for the condi-
tion non-related prime; Met+ group in the masked priming paradigm.

FIGURE A2.

Visual indicators of model convergence for the worst converged example. The parameter shown is a for the condi-
tion related prime; Val/Val group in the unmasked priming paradigm.

TABLE A1.  
Summary of the Gelman-Rubin Statistics of the Masked and 
Unmasked Priming Paradigm

Paradigm M SD Min. Max.
masked 1.00072 0.0006 1.0001 1.0022

unmasked 1.00300 0.0035 0.9999 1.0116
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TABLE A2.  
Masked priming paradigm

Parameter v
cond_A cond_B m_A m_B sd_A sd_B p(A<B) p(A>B)
v(A.met) v(A.val) 3.7941 4.0021 0.107 0.086 0.9360 -
v(A.met) v(N.met) 3.7941 3.1930 0.107 0.100 - 1.0000
v(A.met) v(N.val) 3.7941 3.4429 0.107 0.079 - 0.9969
v(A.val) v(N.met) 4.0021 3.1930 0.086 0.100 - 1.0000
v(A.val) v(N.val) 4.0021 3.4429 0.086 0.079 - 1.0000
v(N.met) v(N.val) 3.1930 3.4429 0.100 0.079 0.9794 -

Parameter a
cond_A cond_B m_A m_B sd_A sd_B p(A<B) p(A>B)
a(A.met) a(A.val) 1.3700 1.4465 0.046 0.039 0.9026 -
a(A.met) a(N.met) 1.3700 1.2345 0.046 0.039 - 0.9904
a(A.met) a(N.val) 1.3700 1.3957 0.046 0.035 0.6850 -
a(A.val) a(N.met) 1.4465 1.2345 0.039 0.039 - 1.0000
a(A.val) a(N.val) 1.4465 1.3957 0.039 0.035 - 0.8486
a(N.met) a(N.val) 1.2345 1.3957 0.039 0.035 0.9994 -

Parameter t0
cond_A cond_B m_A m_B sd_A sd_B p(A<B) p(A>B)
t(A.met) t(A.val) 0.3850 0.3892 0.005 0.004 0.7304 -
t(A.met) t(N.met) 0.3850 0.3974 0.005 0.005 0.9493 -
t(A.met) t(N.val) 0.3850 0.3938 0.005 0.004 0.9017 -
t(A.val) t(N.met) 0.3892 0.3974 0.004 0.005 0.8900 -
t(A.val) t(N.val) 0.3892 0.3938 0.004 0.004 0.7833 -
t(N.met) t(N.val) 0.3974 0.3938 0.005 0.004 - 0.7084

TABLE A3.  
Unmasked priming paradigm

Parameter v
cond_A cond_B m_A m_B sd_A sd_B p(A<B) p(A>B)
v(A.met) v(A.val) 4.4170 4.4261 0.173 0.137 0.5153 -
v(A.met) v(I.met) 4.4170 3.5195 0.173 0.144 - 1.0000
v(A.met) v(I.val) 4.4170 3.8078 0.173 0.116 - 0.9994
v(A.met) v(N.met) 4.4170 2.9452 0.173 0.132 - 1.0000
v(A.met) v(N.val) 4.4170 3.1303 0.173 0.107 - 1.0000
v(A.val) v(I.met) 4.4261 3.5195 0.137 0.144 - 1.0000
v(A.val) v(I.val) 4.4261 3.8078 0.137 0.116 - 0.9994
v(A.val) v(N.met) 4.4261 2.9452 0.137 0.132 - 1.0000
v(A.val) v(N.val) 4.4261 3.1303 0.137 0.107 - 1.0000
v(I.met) v(I.val) 3.5195 3.8078 0.144 0.116 0.9440 -
v(I.met) v(N.met) 3.5195 2.9452 0.144 0.132 - 0.9987
v(I.met) v(N.val) 3.5195 3.1303 0.144 0.107 - 0.9856
v(I.val) v(N.met) 3.8078 2.9452 0.116 0.132 - 1.0000
v(I.val) v(N.val) 3.8078 3.1303 0.116 0.107 - 1.0000

v(N.met) v(N.val) 2.9452 3.1303 0.132 0.107 0.8720 -
Parameter a

cond_A cond_B m_A m_B sd_A sd_B p(A<B) p(A>B)
a(A.met) a(A.val) 1.4827 1.4826 0.075 0.063 - 0.5149
a(A.met) a(I.met) 1.4827 1.3012 0.075 0.054 - 0.9779
a(A.met) a(I.val) 1.4827 1.4408 0.075 0.051 - 0.6797
a(A.met) a(N.met) 1.4827 1.1447 0.075 0.044 - 1.0000
a(A.met) a(N.val) 1.4827 1.2420 0.075 0.038 - 0.9991
a(A.val) a(I.met) 1.4826 1.3012 0.063 0.054 - 0.9916
a(A.val) a(I.val) 1.4826 1.4408 0.063 0.051 - 0.7010
a(A.val) a(N.met) 1.4826 1.1447 0.063 0.044 - 1.0000
a(A.val) a(N.val) 1.4826 1.2420 0.063 0.038 - 0.9994
a(I.met) a(I.val) 1.3012 1.4408 0.054 0.051 0.9744 -
a(I.met) a(N.met) 1.3012 1.1447 0.054 0.044 - 0.9916
a(I.met) a(N.val) 1.3012 1.2420 0.054 0.038 - 0.8237
a(I.val) a(N.met) 1.4408 1.1447 0.051 0.044 - 1.0000
a(I.val) a(N.val) 1.4408 1.2420 0.051 0.038 - 0.9996

a(N.met) a(N.val) 1.1447 1.2420 0.044 0.038 0.9611 -
Parameter t0

cond_A cond_B m_A m_B sd_A sd_B p(A<B) p(A>B)
t(A.met) t(A.val) 0.3617 0.3692 0.008 0.006 0.7841 -
t(A.met) t(I.met) 0.3617 0.3816 0.008 0.007 0.9731 -
t(A.met) t(I.val) 0.3617 0.3860 0.008 0.006 0.9947 -
t(A.met) t(N.met) 0.3617 0.3999 0.008 0.007 1.0000 -
t(A.met) t(N.val) 0.3617 0.3998 0.008 0.005 1.0000 -
t(A.val) t(I.met) 0.3692 0.3816 0.006 0.007 0.9153 -
t(A.val) t(I.val) 0.3692 0.3860 0.006 0.006 0.9789 -
t(A.val) t(N.met) 0.3692 0.3999 0.006 0.007 0.9997 -
t(A.val) t(N.val) 0.3692 0.3998 0.006 0.005 0.9999 -
t(I.met) t(I.val) 0.3816 0.3860 0.007 0.006 0.6911 -
t(I.met) t(N.met) 0.3816 0.3999 0.007 0.007 0.9711 -
t(I.met) t(N.val) 0.3816 0.3998 0.007 0.005 0.9809 -
t(I.val) t(N.met) 0.3860 0.3999 0.006 0.007 0.9387 -
t(I.val) t(N.val) 0.3860 0.3998 0.006 0.005 0.9603 -

t(N.met) t(N.val) 0.3999 0.3998 0.007 0.005 - 0.5043

FOOTNOTES
1 HDDM-Wiki: http://ski.clps.brown.edu/hddm_docs/howto.html#assess-model-convergence
2 For an example of a non converged chain, see: http://ski.clps.brown.edu/hddm_docs/howto.html#assess-model-convergence
3 The parameters provided here are the group nodes, that is, the estimated mean parameters for that condition. Note that these are not the same 

parameters as the average of the subject parameters used for the Bayesian analyses of variance (ANOVAs) analysis in the paper.
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