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Backward masking refers to reduced visibility of a 

target stimulus when it is followed by a mask stimu-

lus. The conditions under which masking occurs, and 

some special properties and uses of backward mask-

ing, are well summarized in other papers in this issue 

(Breitmeyer this volume, Enns, & Oriet, this volume). 

This paper looks at the status of quantitative models, 

considers some issues and limitations about such mod-

els, and then explores how to proceed in a way that 

will improve the study and use of backward masking. 

Studies of masking often vary the timing between 

the target and mask stimulus. A measure of target visi-

bility plotted against the stimulus onset asynchrony 

(SOA) between the target and mask is called a mask-

ing function. Empirical work typically finds two types of

masking functions, referred to as Type A and Type B.  

A Type A masking function is shown in Figure 1a. The 

visibility of the target is minimized for common onset of 

the target and mask (SOA = 0). As the SOA increases, 

the target becomes more visible. A Type B masking 

function is shown in Figure 1b. The target is easily vis-

ible for common onset of the target and mask stimuli, 

but becomes less visible as the SOA increases. After 

reaching a minimum of visibility (maximum of masking) 

at some intermediate SOA, target visibility increases. 

Whether Type A or Type B masking is produced depends 

on the target, mask, experimental task, and conditions 

of the experiment, as is discussed in other papers in this 

issue (Breitmeyer this volume, Bridgeman this volume, 

Herzog, this volume). 

Scholarly papers on backward masking often de-

scribe it as mysterious, paradoxical, or surprising. 

These claims about backward masking are of two 

types. First, it is surprising to some researchers that 

a trailing mask can affect the visibility of the leading 

target. Indeed, the phenomenological appearance of 

the target-mask sequence is sometimes that only the 

mask is presented. This result is surprising for some 

views of neural processing that supposes information 

proceeds in a feed forward manner. In some such 

views, the earlier target information would always be 

at a neural location where the mask information was 

not. In such a view, masking requires the mask infor-

mation to lead ahead in space (or backward in time) to 

interfere with the target percept. 

ABSTRACT

Quantitative models of backward masking ap-

peared almost as soon as computing technology 

was available to simulate them; and continued in-

terest in masking has lead to the development of 

new models. Despite this long history, the impact 

of the models on the field has been limited because

they have fundamental shortcomings. This paper 

discusses these shortcomings and outlines what 

future quantitative models should look like. It also 

discusses several issues about modeling and how 

a model could be used by researchers to better ex-

plore masking and other aspects of cognition.
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The second mysterious or paradoxical property of 

masking is that Type B masking should ever exist. 

It might seem that whatever interference might be 

caused by the mask, it should be strongest when the 

target and mask maximally overlap in time. Type B 

masking indicates that this is not always true. Instead, 

the strongest masking sometimes occurs when the 

mask follows the target by tens of milliseconds.

These properties of backward masking may, indeed, 

have been mysterious, paradoxical, or surprising  

70-100 years ago when they were discovered (Alpern, 

1953; Stigler, 1910; Werner, 1935), but the mystery 

is no longer a motivation to study masking. Studies 

of quantitative models reveal that these properties of 

masking are quite easy to explain in a variety of ways. 

There are, in fact, over a dozen models that have been 

applied to backward masking conditions, and most 

can explain the appearance of both Type A and Type 

B masking functions. The oldest models are over 35 

years old, which suggests that the mystery, surprise, 

and paradox of backward masking persist only for 

those who do not know of the modelling work. 

One of the earliest computational models in psychol-

ogy was proposed by Weisstein (1966, 1972) to study 

aspects of backward masking. At about the same time 

Bridgeman (1971, 1978, this volume) showed that 

masking was a natural property of a system of recur-

rent lateral inhibition. Anbar and Anbar (1982) demon-

strated that a model of brightness perception showed 

Type B masking when extended to the temporal do-

main. Reeves (1982) introduced a probabilistic model 

that explains some relationships between masking 

functions and perceptual experiences of integration 

and success. During much of the 1980s, interest in 

masking waned generally, and there were fewer new 

models. Interest was renewed in the 1990s and mod-

els soon followed. Öğmen (1993) and Purushothaman, 

Öğmen, and Bedel (2000) proposed a neural network 

model that was conceptually linked to Weisstein’s 

model. Bachmann (1994) included equations to emu-

late aspects of his perceptual retouch model. Francis 

(1997) investigated the dynamics of Grossberg and 

Mingolla’s (1985) model of visual perception and found 

that it matched a variety of masking data.  

Since the turn of the century, there have been even 

more models. Francis (2000, 2003a, 2003b) identified

a variety of computational systems that could account 

for many properties of masking. Di Lollo, Enns, and 

Rensink (2000) proposed the Computational Model of 

Object Substitution (CMOS), which nicely fit their ex-

perimental findings on common onset masking. Her-

zog, Ernst, Etzold, and Eurich (2003) found that many 

properties of masking could be accounted for with a 

simple network of Wilson-Cowan equations (see also 

Hermens & Ernst, this volume). Bugmann and Taylor 

(2005) found that Type B masking was produced by 

a hierarchical pyramid structure of visual process-

ing. Francis and Cho (2005, 2007) identified a simple

model that uses one of the computational systems 

identified in Francis (2000). Bowman, Schlaghecken, 

and Eimer (2006) used a model of masking to explain 

some aspects of subliminal priming. 

Clearly, there are many different models that ac-

count for properties of backward masking. Significantly,

many of these models were originally designed for 

entirely different reasons. This includes the models of 

Bridgeman (1971), Anbar and Anbar (1982), Öğmen 
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Figure 1.
A plot of target percept strength against SOA between the 
target and mask stimuli is called a masking function. (a) 
A Type A masking function occurs when the target percept 
strength increases with SOA. (b) A Type B masking func-
tion occurs when the target percept strength decreases 
then increases with SOA.
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(1993), Francis (1997), Herzog et al. (2003), and 

Bugmann and Taylor (2005). Such models demon-

strate that many properties of backward masking are 

a natural part of visual processing. 

Why are there so many different models of back-

ward masking? Considering this question reveals some 

important issues about modelling and backward mask-

ing. The first answer is that there are so many mod-

els of masking because there is no general theory of 

visual perception that might place constraints on the 

structure and properties of models. Without a general 

theory, it is fairly easy to introduce a new model and 

argue against other models. 

Second, some aspects of masking, such as the 

existence of Type B masking (Breitmeyer & Öğmen, 

2000) or common onset masking (Di Lollo et al., 

2000) have been described as difficult to explain.

Modellers are drawn to challenges and so explore 

whether their model can account for the empirical 

results. Success is often reported, but it is often 

less because of the details of the model and more 

because many of the models explain aspects of 

masking with similar basic principles. For example, 

Francis and Cho (2005) show how a small system 

with four equations can produce a Type B masking 

function. Bugmann and Taylor (2005) used a system 

with 341 equations to also produce a Type B mask-

ing function. There are many important differences 

between the models and there are differences in 

the quantitative values of their masking functions. 

Nevertheless, both models produce a Type B mask-

ing function for essentially the same reasons. There 

are many different models of masking, in part, be-

cause researchers end up repeating the same basic 

principles in a variety of models. 

Such repetition is worthwhile. The model pro-

posed by Francis and Cho (2005) demonstrates 

one of the simplest systems that can produce a 

Type B masking function. In contrast, the model of 

Bugmann and Taylor (2005) demonstrates that the 

same basic principle robustly applies even when it 

is embedded in a much more complicated system. 

There is value to both kinds of implementations of 

the principle. 

On the other hand, this kind of repetition is not of-

ten recognized as repetition. The models of Weisstein 

(1972) and Bridgeman (1971) have often been con-

sidered as very different models, but Francis (2000) 

showed that both models operate with a common ba-

sic principle. Likewise, Di Lollo et al. (2000) introduced 

their model in part because they claimed other models 

could not account for their data. However, Francis 

and Hermens (2002) demonstrated that many mod-

els could account much of their experimental data. In 

general, models that look very different may still oper-

ate with the same basic principles.

TESTING MODELS OF BACKWARD 
MASKING

Many experimentalists seem to believe that the best 

model is the one with the fewest parameters; a varia-

tion of Occam’s razor. However, this view is too narrow. 

Consider, for example, a comparison of the Francis and 

Cho (2005) and Bugmann and Taylor (2005) models. 

Both explain the general shape of Type B masking. 

Which model is better? A comparison of parameters 

would seem to favour the model of Francis and Cho, 

which has very few parameters, over the model of 

Bugmann and Taylor, which has thousands of param-

eters. If one just wants to talk about ways of produc-

ing the Type B masking function, then this may be a 

reasonable conclusion. But we are less interested in 

masking functions than in visual perception in general. 

In this regard both models are so far from the truth 

(the human visual system would need billions or pos-

sibly trillions of parameters to be characterized) that 

the question of which model is better is not likely to be 

settled by counting the number of parameters. 

The current state of modelling backward masking 

has both pros and cons. The pros include a rich set 

of models that operate at many different levels. Such 

variety indicates that there is an interest in developing 

models of masking. The cons include that all of the 

models are so simple that they cannot possibly be cor-

rect. In this regard, it is very difficult to test models.

Indeed, it is not at all difficult to find shortcomings

in any of the quantitative models. For example, none 

of the models deal with depth perception, colour vi-

sion, short term memory, or human decision making. 

Making progress in modelling depends not so much on 

identifying flaws in the models, but in identifying those

particular flaws that either force a complete rejection

of a model or suggest how to modify the model. 

Francis and Herzog (2004) recently identified one

such flaw. There is a notable characteristic of almost

all of the models regarding how they produce Type A 

and Type B masking functions. All of the models predict 

that the shape of the masking function is connected to 

the overall strength of masking. Namely, strong masks 

should produce Type A masking functions, while weak 

masks should produce Type B masking functions. 

Figure 2a shows masking functions generated by the 

model of Francis and Cho (2007) for masks of differ-
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ent intensities. The Type B masking functions always 

lay above the Type A masking functions at each SOA, 

and this effect is a property of many different models 

of backward masking (Francis & Herzog, 2004). Thus, 

all of these models predict that if the target and task 

are held fixed, then variations in the mask (intensity,

duration, or shape) could vary the shape of the mask-

ing function from Type A to Type B, but only such that 

the masking function curves do not intersect.

We have now identified several circumstances where

this prediction does not hold (Francis & Cho, 2007; 

Francis & Herzog, 2004). Figure 2b combines data from 

two experiments in Francis and Cho (2007), where the 

target and task were always the same (identify the 

orientation of a half disk target among three full disk 

distracters), but the spatial shape of the mask varied.  

The main finding is that variations in the spatial shape

of the mask lead to Type A or Type B masking func-

tions, but that these masking function shapes were not 

related to the overall strength of masking. 

This data presents a significant problem for all of

the current models. There is no variation of param-

eters that will allow the models to match this experi-

mental finding. There needs to be entirely new kinds of

models with properties quite different from the current 

models. 

One of the key problems with the current models 

is that they do not have a sufficiently rich representa-

tion of the spatial properties of the target and mask 

stimuli (Herzog, this volume). For many of the models, 

the representation of the mask is simply a numerical 

value that changes over time. This is explicitly the 

case for the models by Weisstein (1972), Anbar and 

Anbar (1982), Bachmann (1994), Di Lollo et al. (2000), 

Francis (2003a), and Francis and Cho (2005). Even for 

models that include a spatial representation of stimuli, 

the calculations of masking often reduce the mask’s ef-

fect on the target to a single numerical value. Francis 

(2000) showed that this was the case for the recurrent 

lateral inhibition model of Bridgeman (1971, 1978), and 

a similar conclusion appears to be true for the models of 

Francis (1997), Purushothaman et al. (2000), Herzog et 

al. (2003) and Bugmann and Taylor (2005). 

The significance of this property is that a variation in

the spatial shape of the mask, as in Figure 2b can only 

lead to a differing magnitude (or duration) of the cor-

responding mask’s effect in the model. Thus, advance-

ment of the models requires a substantial elaboration 

of the spatial aspects of the models. Interestingly, 

Weisstein (1972) long ago recognized the need for 

models to include spatial as well as temporal proper-

ties of masking. Indeed, it is obvious that any attempt 

to build a model of visual perception that does not 

include spatial vision is missing an important part of 

the story.

There are two primary reasons why it has taken 

over 30 years to return to Weisstein’s observation that 

models of backward masking must combine both spa-

tial and temporal aspects of visual perception. First, 

the current models, even with their limited spatial rep-

resentation of stimuli, have successfully accounted for 

many properties of backward masking. Second, com-

puting resources have not generally been available 

to build models of visual perception that incorporate 

both space and time. Even the computer simulations 

with current models sometimes take days or weeks 

(Francis, 1997; Purushothaman et al., 2000) to car-
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Figure 2.
(a) Simulation results from the model of Francis and Cho 
(in press) show that the shape of the masking function is 
related to masking strength. Type A functions occur for 
strong masks and Type B functions for weaker masks, and 
the curves never cross. (b) An experimental study in Fran-
cis and Cho (in press) varied the spatial shape of the mask. 
The shape of the masking function is not related to mask-
ing strength and the curves cross. 
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ry out key simulations. Models that include a richer 

spatial representation (e.g., Cao & Grossberg, 2005; 

Grossberg, 1997; Itti, Koch, & Niebur, 1998) will take 

many times longer on similar computer equipment. It 

is not clear whether modern computing power is suf-

ficient to build the kind of model that appears to be

needed. We return to this issue in a later section.

DEVELOPING A NEW MODEL  
OF BACKWARD MASKING

Since a new kind of model appears to be needed, this 

is a good opportunity to consider the desired proper-

ties and features of such a model. The development of 

such a model needs to be constrained by both what is 

technically possible and also by what will be of interest 

to other researchers. 

The last point deserves elaboration. Although 

there are many models of backward masking, they 

are used almost exclusively by modellers themselves. 

These uses include demonstrations of how the models 

match experimental data, tests of model assumptions, 

promotion of model development, comparing and 

contrasting models, and (rarely) identifying new prop-

erties of masking that are predicted by the models. 

Significantly, the models have almost never been used

to explain other aspects of cognition, perception, or 

consciousness. This is notable because masking tech-

niques are often used to experimentally investigate 

these topics. Apparently, the properties and features 

of current models are not sufficient to contribute to

the discussion of those topics. This lack of model use 

is not a healthy arrangement for the field. Ideally, non-

modellers would use the models to explore aspects of 

cognition and introduce new ideas that would drive 

model development. 

So what would a new model of masking ideally look 

like? Given the problems with the current models de-

scribed above, the new model must combine models 

of spatial vision and models of temporal vision. Some 

of these model parts may already exists, but putting 

them together may not be trivial. In particular, models 

of spatial vision simply may not work properly when 

temporal dynamics are considered. 

There is a tendency for scientists to want simple 

models, but a system that mathematically deals with 

both spatial and temporal aspects of visual percep-

tion is unlikely to be simple. There may be simple 

parts of the model and there may be principles that 

guide the main computations of the model, but the 

most interesting parts of perception will involve inter-

actions between the simple model parts. When such 

interactions involve feedback and non-linear relation-

ships, the resulting behaviour is unlikely to be simple. 

Indeed, past research indicates that there may be no 

way to predict the behaviour of such a system except 

by direct simulation. In this respect, the model will 

have to be studied in a way that is similar to psycho-

physical studies of human perception. Researchers will 

have to identify simulation experiments that test the 

behaviour of the system. This is a different view of 

modelling than most psychologists imagine. For most 

psychologists the definition of the model is essentially

the same thing as understanding the model. In this 

different view though, one can define a model without

fully understanding its behaviour. 

There is a risk that a research project like this may 

end up with a model that is just as complicated as 

what it hopes to explain. How should model behav-

iour be connected to experimental data in a way that 

clarifies our understanding of human perception and

cognition? One useful line of investigation concerns ro-

bustness of behaviour. A robust behaviour is one that 

occurs for a variety of circumstances. For example, a 

robust experimental finding of backward masking is

that increases in the duration of the mask tend to lead 

to stronger masking. This is true for a wide variety 

of stimuli, experimental tasks, observers, and other 

details of an experiment. Figure 3 summarizes experi-

mental data from three very different studies that all 

demonstrate the effect of mask duration. 

Here, we briefly describe the experiments because

it helps to demonstrate how some masking effects ex-

ist across a variety of contexts and tasks. Breitmeyer 

(1978) had observers vary the luminance of a compar-

ison stimulus to match the perceived brightness of a 

target disk that was masked by a surrounding annulus. 

The experiment varied the SOA between target and 

mask and varied the duration of the mask. Figure 3 

plots target visibility for varying mask durations aver-

aged across the various SOAs. In this experiment there 

is a sharp drop in target visibility as mask duration 

increases. Di Lollo, Bischof, and Dixon (1993) had ob-

servers report the orientation of a gap that was placed 

on one side of a target outline square. The mask was 

an outline square with a gap on each side. They kept 

the SOA at zero, but varied the mask duration. Again, 

Figure 3 shows that there is a drop in percentage cor-

rect as mask duration increased. Francis, Rothmayer, 

and Hermens (2004) had observers report the orienta-

tion of a target half disk among three distracting full 

disks. The mask was a set of annuli that surrounded the 

target and distracter elements. SOA, target duration, 

and mask duration were all varied. Figure 3 shows the 
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effect of mask duration averaged across all SOAs and 

two target durations. Although the slope is more shal-

low than for the other data sets, again percentage cor-

rect decreases as mask duration increases. Although 

it also used a variety of mask durations, the study by 

Macknik & Livingstone (1998) is not included in this 

figure because they normalized the overall strength of

masking for each stimulus condition. This normaliza-

tion prevents a comparison of masking strength for 

different mask durations.

There may be several different ways to account for 

this robust experimental finding, but a key point is

that it is robust. It holds for a variety of experimental 

tasks, stimuli, and contexts. Thus, whatever the hy-

pothesized model mechanisms, the model behaviour 

must also be robust. That is, small variations in model 

parameters might change the magnitude of masking, 

but should not change the overall effect of increases 

in mask duration. Robust experimental findings should

be explained by robust properties of the model.

Just the opposite is true for sensitive behaviours. 

For example, backward masking studies have found 

different effects of dark adaptation. Purcell, Stewart, 

and Bruner (1974) found that masking was stronger 

when observers were dark adapted. The data in Figure 

4 are averaged across several SOAs. In contrast, 

Bischof and Di Lollo (1995) found that masking was 

absent when observers were dark adapted, but strong 

when observers were light adapted. The data in Figure 

4 are from the faintest stimuli in each condition, aver-

aged across many SOAs. Both studies appear to be 

conducted properly, so the conclusion is that the effect 

of dark adaptation is sensitive to many details of the 

task, stimuli, observers, and other experimental con-

ditions. As a result, a model’s explanation of the effect 

of dark adaptation needs to be similarly sensitive. In 

such a model, one would expect that changes in model 

parameters would lead to rather different model be-

haviours with regard to light adaptation.

In general, robust experimental findings can be

used to identify the main structure and properties of a 

model. Such findings are not so effective at identify-

ing the particular parameters that define the model’s

behaviour. In contrast, sensitive experimental findings

can be used to precisely parameterize a model, but 

tend to not be useful for characterizing the general 

structure and function of a model.

MODEL STRUCTURE  
AND COMPUTATION

When constructing a model, one has to consider the 

units and mechanisms that make up the model com-

ponents. Because backward masking is a tool that 

is used both by psychologists to explore aspects of 

human behaviour and by neuroscientists to explore 

properties of the brain, the ideal model will be defined

in terms of neural units. 

Ideally, the model would receive spatial images (as 

on a computer monitor) with an explicit representation 

of time. This arrangement would allow the model to 

essentially act as a “subject” in a psychophysical or 

neurophysiological experiment. There are good start-

ing points for the development of this aspect of the 

model structure (e.g., Grossberg, 1997), although it is 
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Robust effects of mask duration on masking. Even though 
there are substantive differences in the experiments, all 
of these studies show that masking grows stronger with 
increases in mask duration. 
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unclear whether current computing power is sufficient

to provide the spatial and temporal resolution that ap-

pears to be needed to emulate a backward masking 

experiment. 

Some quick calculations explain why there may 

be a problem finding sufficient computing power. The

temporal model of Weisstein (1972) utilizes only six 

model neurons. On a PC running at 3.2 GHz with 1 GB 

of RAM, the simulation described in Francis (2003b)  

takes approximately 29 milliseconds to compute each 

point in a masking function (there is some variability 

because it depends on the SOA). A masking function 

curve such as in Figures 1 or 2 involves calculation of 

around 10-20 points. This means that such a curve 

will take between 290 and 580 milliseconds (plus a 

bit more for setting up the simulation and saving re-

sults). As an approximation, let us say the simulation 

time to produce a masking function curve is around 

500 milliseconds. This is generally fast enough that 

a researcher can explore the model for variations of 

parameters and fits to experimental data.

The Weisstein model contains no representation  

of the spatial properties of the target or mask stimuli. 

Suppose that the model is extended in to 2-dimen-

sional space by replicating the current model cells  

at multiple pixel locations. If the simulation grid is  

200 by 200 pixels that each operate as the original 

model, this means that there are 200 × 200 = 40,000 

pixels. To compute a masking function curve with 

this spatio-temporal Weisstein model would require 

40,000 × 500 ms = 20,000,000 ms = 5.6 hours.  

Such a long time to compute a single masking curve 

is perhaps close to the limit of what would allow a 

researcher to explore a variety of model parameters. 

A similar point can be seen by observing the com-

putational requirements of a detailed spatial model of 

visual perception. Koch and Walther (2006) produced a 

MatLab version of the Itti et al. (1998) model of visual 

perception and have made their code available on the 

Internet. This model involves many spatial filters that

are sensitive to different orientations, colours, and 

spatial scales. On the same computer as described 

above, this program took around ten seconds to 

compute the model’s response to an image of 700 by 

560 pixels. The precise computation time depends on 

the properties of the image, but ten seconds is a ball 

park figure. If this model were extended to include a

temporal component and the same computations were 

carried out every 50 milliseconds of real time, it would 

take 0.28 hours to go through one second of simulated 

time, which is approximately the duration of a single 

backward masking trial. A masking curve with 20 data 

points would require at least 5.6 hours of computation 

time. 

The main point is that moving from a model of 

temporal vision or a model of spatial vision to a spa-

tio-temporal model involves an enormous increase in 

computational requirements. Of course, faster com-

puters and software compilers exist that could speed 

up the simulation times. On the other hand, it is very 

likely that translating either a temporal or spatial mod-

el of visual perception in to a spatio-temporal model 

will require new model components that will further 

increase the computational load of simulations. 

Feed forward and feedback models

There has been substantial discussion, both within 

the field of masking and elsewhere, about the impor-

tance of feedback within models. Some researchers 

have taken the stand that certain experimental find-

ings rule out feed forward models (Di Lollo, Enns, & 

Rensink, 2000, 2002). This topic deserves some addi-

tional discussion because, contrary to common belief, 

such debates rarely help drive model development. A 

system with feedback may behave exactly the same as 

a feed forward system.

Part of the confusion is due to people failing to make 

a distinction between anatomical feedback and com-

putational feedback. Neurophysiologists have estab-

lished that there are re-entrant fibres that project from

higher cortical areas to lower cortical areas. This is an 

established anatomical fact, and it is quite likely that 

these fibres influence perceptual experience. Exactly

what these signals do is less clear. For psychologists, 

though, the behaviour of the system is more impor-

tant than the anatomy. Currently there is no known 

model behaviour that can be used as a “marker” for 

feedback.

Worse still, there is no clear connection between 

anatomical feedback and mathematical equations. 

Consider the two different anatomical systems in 

Figure 5. The system on the left has anatomical feed-

back while the system on the right does not. The 

circles can be thought of as neurons or populations 

of neurons; the details are not so important for the 

current discussion. Because we are interested in the 

dynamics of perception, it is natural to describe the 

“activity” of the units with differential equations that 

describe the instantaneous changes in activity. The 

feedback system might be described with a pair of dif-

ferential equations:

  
dx(t)
 _____ dt   = –Ax(t) + I(t) + By(t)

and

(1)

(2)
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dx(t)
 _____ dt   = –Cy(t) + Dx(t)

Here, the capital letters indicate parameters and  

the terms –Ax(t) and –Cy(t) indicate passive decay. 

The activity from the higher level, y(t), feeds back in 

to the equation for activity at the lower level, x(t), 

through the term By(t). In this case, the mathemati-

cal layout of terms appears to match the anatomical 

structure. 

For the feed forward system on the right there 

might be only one equation. 

  
dx(t)
 _____ dt   = –Fx(t) + I(t)

The term –Fx(t) again indicates passive decay and 

there is no feedback from higher areas. 

Now let us add one further condition to the system. 

Suppose the differential equation at the higher stage 

of the feedback system runs much faster than the dif-

ferential equation of the lower stage. (This would be the 

case if C and D are much larger than A and B.) In this 

situation the value of y(t) changes dramatically while 

x(t) is approximately constant. The value y(t) can be 

treated as its algebraic equilibrium value (found by set-

ting equation 2 equal to zero and solving for y(t)):

y(t) =   D __ C   x(t)

This has a significant effect on how we can describe

the rest of the feedback system. If we replace y(t) in 

equation (1) with the right hand side of equation (4), 

we get

  
dx(t)
 _____ dt   = –Ax(t) + I(t) + B   D __ C   x(t)

Now define the parameter

F = A – B   D __ C  

If we combine the terms in equation (5) that multi-

ply x(t), the equation becomes

  
dx(t)
 _____ dt   = –Fx(t) + I(t)

This is identical to equation (3)! In this case the be-

haviour of x(t) is mathematically identical in the feed-

back system and in the feed forward system. Thus, 

even if the anatomy of the visual system provides 

clear evidence of re-entrant or feedback signals, this 

does not guarantee that the system behaves any dif-

ferently than a feed forward system. It is noteworthy 

too that, at first glance, equation 7 would seem like a

very poor description of the feedback system in Figure 

5. In fact, though, it fully captures the behaviour of the 

lower unit and the behaviour of the upper unit is just a 

multiple of the lower unit.

Of course, such isomorphism may not always be 

possible or practical, but one never knows for sure 

what the feedback signals actually do, and there are 

many other analogous situations that blur the distinc-

tion between feedback and feed forward systems. As 

Reeves (this volume) observes, mathematicians have 

noted that any feedback system can be approximated 

by a suitably complex feed forward system.

None of this is to say that re-entry, feedback, and 

non-linearities should be not investigated. To the con-

trary, their presence in the anatomy of the nervous 

system suggests that they need to be characterized 

and studied carefully. The problem with many of the 

current discussions of feedback in masking is that they 

fail to specify the exact nature of re-entry feedback (Di 

Lollo et al., 2000; Enns, 2004). As a result there are no 

precise predictions about what the feedback actually 

does within the system. 

On the other hand, when the feedback is character-

ized in a precise quantitative way, the resulting model 

can make very precise statements about how the sys-

tem behaves and what different parts of the model 

are doing (e.g., Hansen & Neumann 2004; Raizada & 

Grossberg, 2001).

USING A MODEL OF MASKING

Having identified what a quantitative model of back-

ward masking might look like, we now turn to whether 

it should be built. The question is whether there is suf-

ficient need for a model to justify the required effort

)(tI )(tI

)(tx

)(ty

)(tx

)(tI )(tI )(tI )(tI

)(tx

)(ty

)(tx

Figure 5.
Two hypothetical systems that differ in whether they have 
anatomical feedback connections (left) or not (right). See 
the text for a mathematical model of how such systems 
might behave. 

(3)

(4)

(5)

(6)

(7)
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and expense. In an attempt to answer affirmatively we

can consider some possible uses of such a model. 

1. Create an ideal mask for a given target and task. 

Backward masking is commonly used to study other 

aspects of cognition. At the moment the properties 

of the mask are found by experimental trial and er-

ror. Such work is frustratingly slow and inefficient. A

good model might be able to speed up the process 

by identifying mask properties that would be able 

to mask the target properties most important to the 

experimenter. 

2. Identify new experimental techniques to explore 

consciousness. Although backward masking has a 

long history of contributing to studies of conscious-

ness there have always been concerns about what 

the studies are actually measuring. A computational 

model of masking might be able to identify new ex-

perimental studies that avoid some of the concerns 

with these techniques. 

3. Identify experimental and neurophysiological mark-

ers for mental disease. Several studies have shown 

that backward masking differs for people with 

various types of mental disease, relative to normals 

(Braff & Saccuzzo, 1981; Green, Nuechterlein, & 

Mintz, 1994). A model may be able to help identify 

what mechanisms are different, which could lead to 

early detection and better understanding of how the 

disease operates.

Since backward masking is used as a tool to in-

vestigate many other neurophysiological and mental 

phenomenons, a good model would surely be useful in 

many other situations. 

CONCLUSIONS

Backward masking is an important topic that is used 

throughout psychology both to investigate visual 

perception and as a tool to study other aspects of 

cognition. Unfortunately, there is currently no theory 

of how backward masking operates that can guide 

researchers on how to use masking. In particular, all 

of the quantitative models of backward masking have 

recently been shown to be invalid because they lack a 

sufficient representation of visual space.

These findings suggest that new types of models of

backward masking are needed. It seems that a new 

model needs to deal with both space and time so that 

it can work with visual stimuli that are similar to those 

used in psychophysical experiments. The model needs 

to be flexible enough to operate in a variety of experi-

mental situations and be connected to many different 

perceptual tasks. The model needs to be described 

in neurophysiological terms. The model needs to be 

structured in such a way that it can be used by non-

modelers. Finally, the model needs to be able to make 

particular predictions of neurophysiological and mental 

behaviour so that it can be tested and developed in a 

meaningful way. 
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